DOI QR코드

DOI QR Code

MgO doping and annealing effect on high temperature electrical resistivity of AlN-Y2O3 ceramics

MgO doping 및 annealing이 AlN-Y2O3 세라믹스의 고온전기저항에 미치는 영향

  • Yu, Dongsu (Icheon Branch, Korea Institution of Ceramic Engineering and Technology) ;
  • Lee, Sung-Min (Icheon Branch, Korea Institution of Ceramic Engineering and Technology) ;
  • Hwang, Kwang-Taek (Icheon Branch, Korea Institution of Ceramic Engineering and Technology) ;
  • Kim, Jong-Young (Icheon Branch, Korea Institution of Ceramic Engineering and Technology) ;
  • Shim, Wooyoung (Department of Advanced Materials Science and Engineering, Yonsei University)
  • 유동수 (한국세라믹기술원 이천분원) ;
  • 이성민 (한국세라믹기술원 이천분원) ;
  • 황광택 (한국세라믹기술원 이천분원) ;
  • 김종영 (한국세라믹기술원 이천분원) ;
  • 심우영 (연세대학교 신소재공학과)
  • Received : 2018.10.01
  • Accepted : 2018.11.26
  • Published : 2018.12.31

Abstract

High temperature electrical conductivity of Aluminum Nitride (AlN) ceramics sintered with $Y_2O_3$ as a sintering aid has been investigated with respect to various sintering conditions and MgO-dopant. When magnesium oxide is added as a dopant, liquid glass-film and crystalline phases such as spinel, perovskite are formed as second phases, which affects their electrical properties. According to high temperature impedance analysis, MgO doping leads to reduction of activation energy and electrical resistivity due to AlN grains. On the other hand, the activation energy and electrical resistivity due to grain boundary were increased by MgO doping. This is a result of the formation of liquid glass film in the grain boundary, which contains Mg ions, or the elevation of schottky barrier due to the precipitation of Mg in the grain boundary. For the annealed sample of MgO doped AlN, the electrical resistivity and activation energy were increased further compared to MgO doped AlN, which results from diffusion of Mg in the grains from grain boundary as shown in the microstructure.

$Y_2O_3$를 소결조제로 사용한 질화알루미나(AlN)에 다양한 소결조건과 MgO의 도핑이 고온전기전도도의 특성에 대해 미치는 영향에 대해 연구하였다. MgO를 도핑 하였을 때, 2차상으로 스피넬과 페로브스카이트 상이 생성되었고, 이는 전기적 특성에 영향을 끼쳤다. 고온 임피던스를 분석한 결과 MgO의 도핑은 AlN 입내의 활성화 에너지와 전기전도도의 감소를 보이는 반면에, 입계의 경우에는 활성화 에너지와 전기전도도의 증가를 보였다. 이는 저항이 높은 비정질의 액상이 입계에 형성되거나, Mg의 석출에 의하여 쇼트키 장벽이 높아졌기 때문으로 예상된다. MgO가 도핑된 AlN을 어닐링 한 경우에는 어닐링 하지 않은 경우에 비하여, 활성화 에너지와 전기전도도가 더욱 증가하는 것을 볼 수 있었다. 이러한 결과는 $1500^{\circ}C$에서 어닐링을 통하여 미세구조분석에서 보이는 바와 같이 Mg 이온이 입계에서 입내로 확산된 때문으로 예상된다.

Keywords

GJSJBE_2018_v28n6_235_f0001.png 이미지

Fig. 1. X-ray diffraction patterns for the sintered specimens of 1Y (a), 1Y2M (b), and 1Y2M-A (c). For (a), YAG is found beside the AlN main phase. For (b) and (c), YAP and MSP are observed along with AlN.

GJSJBE_2018_v28n6_235_f0002.png 이미지

Fig. 2. TEM images for (a) 1Y, (b) the enlarged image of (a), and (c) grain boundary of (a). TEM images for (d) 1Y2M, (e) the enlarged image of (d), and (f) grain boundary of (d). TEM images for (g) 1Y2M-A, (h) the enlarged image of (g), and (i) grain boundary of (g).

GJSJBE_2018_v28n6_235_f0003.png 이미지

Fig. 3. EDX maping images of (a) 1Y (refer to Fig. 2(b)), (b) 1Y2M (refer to Fig. 2(e)) and (c) 1Y2M-A (refer to Fig. 2(g)).

GJSJBE_2018_v28n6_235_f0004.png 이미지

Fig. 5. Complex impedance spectrum spectra of 1Y ((a), (b)), 1Y2M ((c), (d)), and 1Y2M-A ((e), (f)).

GJSJBE_2018_v28n6_235_f0005.png 이미지

Fig. 6. Grain and grain boundary conductivities with respect to temperature for 1Y, 1Y2M, and 1Y2M-A.

GJSJBE_2018_v28n6_235_f0006.png 이미지

Fig. 4. (a) Temperature and time dependences of the electronic resistivity for 1Y2M-A at 100 V/mm (red: RT, black: 100℃, blue: 200℃, Cyan: 300℃, pink: 400℃, green: 500℃). (b) Electronic conductivity with respect to temperature for 1Y, 1Y2M and 1Y2M-A at 100 V/mm.

Table 1 Subscript (m = g, gb) corresponds to high frequency (grain) and low frequency (grain boundary) contributions in Rm, Qm, Cm, εm, respectively. R: resistance, Q: pseudo-capacitance, n: empirical CPE (constant phase element) parameter. Capacitance (C) and permittivity (ε) values were calculated by equation, C = (Q*R)1/n/R

GJSJBE_2018_v28n6_235_t0001.png 이미지

References

  1. R. Atkinson, "A simple theory of the Johnsen-Rahbek effect", Brit. J. Appl. Phys. 2 (1969) 325.
  2. T. Watnabe, T. Kitabayashi and C. Nakayama, "Electrostatic force and absorption current of alumina electrostatic chuck", Jpn. J. Appl. Phys. 31 (1992) 2145. https://doi.org/10.1143/JJAP.31.2145
  3. T. Watnabe, T. Kitabayashi and C. Nakayama, "Relationship between electrical resistivity and electrostatic force of alumina electrostatic chuck", Jpn. J. Appl. Phys. 32 (1993) 864. https://doi.org/10.1143/JJAP.32.864
  4. J. Elp, P.T.M. Giesen and A.M.M. de Groof, "Low-thermal expansion electrostatic chuck materials and clamp mechanisms in vacuum and air", Microelectronic Eng. 73 (2004) 941.
  5. G. Kalkowski, S. Risse, G. Harnisch and V. Guyenot, "Electrostatic chucks for lithography applications", Microelectronic Eng. 57 (2001) 219
  6. G. Kalkowski, S. Risse and V. Guyenot, "Electrostatic chuck behavior at ambient conditions", Microelectronic Eng. 61 (2002) 357
  7. G. Kalkowski, S. Risse, S. Muller and G. Harnisch, "Electrostatic chucks for EUV masks", Microelectronic Eng. 83 (2006) 714. https://doi.org/10.1016/j.mee.2006.01.049
  8. J.C. Bang, "Fabrication of borosilicate glass-coated electrostatic chucks", J. Microelectronics & Packaging Soc. 9 (2002) 49.
  9. K. Aikawa, M. Watanabe, A. Jindo, Y. Katsuda, Y. Sato and Y. Isoda, "Electrostatic chuck", US Patent US 13/869,285 (April 24, 2013).
  10. J.-U. Lee, W.-J. Lee and S.-M. Lee, "Electrical behavior of aluminum nitride ceramics sintered with yttrium oxide and titanium oxide", J. Kor. Ceram. Soc. 53 (2016) 635. https://doi.org/10.4191/kcers.2016.53.6.635
  11. C.M. Whang, W.J. Jeong and S.W. Choi, "Synthesis of aluminum nitride powder from aluminum hydroxide by carbothermal reduction-nitridation", J. Kor. Ceram. Soc. 31 (1994) 893.
  12. W.S. Jung, "Synthesis of aluminum nitride powers and whiskers from a ($NH_{4}$)[Al(edta)].$2H_{2}O$ complex under a flow of nitrogen", J. Kor. Ceram. Soc. 39 (2002) 272. https://doi.org/10.4191/KCERS.2002.39.3.272
  13. S.K. Yang and J.B. Kang, "Synthesis of aluminum nitride whisker by carbothermal reaction I. Effect of fluoride addition", J. Kor. Ceram. Soc. 41 (2004) 118. https://doi.org/10.4191/KCERS.2004.41.2.118
  14. Y. Imanaka, Y. Suzuki, T. Suzuki, K. Hirao, T. Tsuchiya and H. Nagata, "Advanced Ceramic Technologies and Products", (The Ceramic Society of Japan, 2012).
  15. A.V. Virkar, T.B. Jackson and R.A. Cutler, "Thermodynamic and kinetic effects of oxygen removal on the thermal conductivity of aluminum nitride", J. Amer. Ceram. Soc. 72 (1989) 2031. https://doi.org/10.1111/j.1151-2916.1989.tb06027.x
  16. K. Watari, H.J. Hwang, M. Toriyama and S. Kanzaki, "Effective sintering aids for low-temperature sintering of AlN ceramics", J. Mater. Res. 14 (1999) 1409. https://doi.org/10.1557/JMR.1999.0191
  17. G.A. Slack, "Nonmetallic crystals with high thermal conductivity", J. Phy. Chem. Solids 34 (1973) 321. https://doi.org/10.1016/0022-3697(73)90092-9
  18. R.W. Francis and W.L. Worrell, "High temperature electrical conductivity of aluminum nitride", J. Electrochem. Soc. 123 (1976) 430. https://doi.org/10.1149/1.2132844
  19. M. Yahagi and K.S. Goto, "Ionic conductivity of AlN containing $Y_2O_3$ or $Al_2O_3$ at 1173-1773 K", J. Jpn. Inst. Metal 47 (1983) 419. https://doi.org/10.2320/jinstmet1952.47.5_419
  20. M. Zulfequar and A. Kumar, "Electrical conductivity and dielectric behavior of hot-pressed AlN", Adv. Ceram. Mater. 3 (1988) 332. https://doi.org/10.1111/j.1551-2916.1988.tb00229.x
  21. S.A. Jang and G.M. Choi, "Electrical conduction in aluminum nitride", J. Amer. Ceram. Soc. 76 (1993) 957. https://doi.org/10.1111/j.1151-2916.1993.tb05319.x
  22. H.-S. Kim, J.-M. Chae, Y.-S. Oh, H.-T. Kim, K.-B. Shim and S.-M. Lee, "Effects of carbothermal reduction on the thermal and electrical conductivities of aluminum nitride ceramics", Ceram. Inter. 36 (2010) 2039. https://doi.org/10.1016/j.ceramint.2010.04.001
  23. J.-W. Lee, W.-J. Lee, K.-B. Shim and H.-T. Kim, "Effects of sintering conditions on the electrical conductivity of 1 wt% $Y_2O_3$-doped AlN ceramics", J. Kor. Ceram. Soc. 44 (2007) 116. https://doi.org/10.4191/KCERS.2007.44.2.116
  24. S.O. Kasap, "Principles of Electronic materials Materials and Devices", (McGrowMcGraw-Hill, New York, 2006) Ch. 7.3.
  25. D. Yu, E. Lee, S.-M. Lee and J.-Y. Kim, "High temperature ionic and electronic resistivity of MgO and $Ta_2O_5$ doped aluminum nitride", J. Kor. Phys. Soc. 72 (2018) 129. https://doi.org/10.3938/jkps.72.129