DOI QR코드

DOI QR Code

Complex heat-treatment effects on as-built CoCrMo alloy

적층공정법으로 제작된 CoCrMo 합금의 복합열처리 효과

  • Lee, Jung-Il (Department of Materials Science and Engineering, Korea National University of Transportation) ;
  • Kim, Hung Giun (Korea Institute of Industrial Technology) ;
  • Jung, Kyung-Hwan (Korea Institute of Industrial Technology) ;
  • Kim, Kang Min (Korea Institute of Industrial Technology) ;
  • Son, Yong (Research Institute of Advanced Manufacturing Technology, Korea Institute of Industrial Technology) ;
  • Ryu, Jeong Ho (Department of Materials Science and Engineering, Korea National University of Transportation)
  • 이정일 (한국교통대학교 신소재공학과) ;
  • 김형균 (한국생산기술연구원 강원지역본부) ;
  • 정경환 (한국생산기술연구원 강원지역본부) ;
  • 김강민 (한국생산기술연구원 강원지역본부) ;
  • 손용 (한국생산기술연구원 뿌리산업기술연구소 디지털제조공정그룹) ;
  • 류정호 (한국교통대학교 신소재공학과)
  • Received : 2018.10.24
  • Accepted : 2018.11.09
  • Published : 2018.12.31

Abstract

The CoCrMo as-built alloys prepared by 3D-printing process are studied on tensile strength, wear resistance, crystal structure and microstructure after complex heat-treatment including HIP. In this study, HIP treatment for removing micropores, ambient heat-treatment for formation of metal carbides, and solution heat-treatment for homogenization of the created metal carbides were tried and characterized for applying to artificial joint. The complex heat-treatment effects of the CoCrMo as-built alloys prepared by 3D-printing process were owing to the densification during HIP, formation of metal carbides and homogenization of the created metal carbides. The effects of the complex heat-treatment were confirmed by XRD, FE-SEM and EDS.

본 연구에서는 3D-프린팅 적층 공정으로 제조한 인공관절용 CoCrMo 합금 소재의 HIP 처리를 포함한 복합열처리 후 소재의 인장특성, 내마모 특성 등의 기계적 특성과 결정구조 및 미세조직 등의 재료특성 변화를 고찰하였다. 내부마이크로 기공을 제거하기 위한 HIP 열처리와 금속탄화물 생성을 위한 상압열처리 및 금속탄화물의 균질화를 위한 용체화 열처리를 거치는 복합열처리 공정을 실시하여 인공관절 소재로서의 특성을 부여하고자 하였다. 3D-프린팅 적층 공정으로 제조한 인공관절용 CoCrMo 합금 소재의 복합열처리 효과는 HIP 공정중의 치밀화 과정, 상압열처리 중의 금속탄화물 생성 및 용체화 열처리 과정중의 금속탄화물의 균질화 효과임을 XRD, FE-SEM, EDS 분석으로 확인하였다.

Keywords

GJSJBE_2018_v28n6_250_f0001.png 이미지

Fig. 1. Tensile strength and elongation rate of the CoCrMo alloy samples.

GJSJBE_2018_v28n6_250_f0002.png 이미지

Fig. 2. Vickers and Rockwell hardness of the CoCrMo alloy samples.

GJSJBE_2018_v28n6_250_f0003.png 이미지

Fig. 3. XRD results of the CoCrMo alloy samples.

GJSJBE_2018_v28n6_250_f0004.png 이미지

Fig. 4. Optical microscopy pictures of the CoCrMo alloy samples.

GJSJBE_2018_v28n6_250_f0005.png 이미지

Fig. 5. FE-SEM and EDS results of the CoCrMo alloy sample #1 and #2.

Table 1 Heat-treatment processes of CoCrMo alloy

GJSJBE_2018_v28n6_250_t0001.png 이미지

Table 2 Atomic concentration of CoCrMo samples analyzed by WD-XRF

GJSJBE_2018_v28n6_250_t0002.png 이미지

Table 3 Wear resistance properties of the CoCrMo alloy samples

GJSJBE_2018_v28n6_250_t0003.png 이미지

References

  1. R. Rosenthal, B.R. Cardoso, I.S. Bott, R.P.R. Paranhos and E.A. Carvalho, "Phase characterization in as-cast F-75 Co-Cr-Mo-C alloy", J. Mater. Sci. 45 (2010) 4021. https://doi.org/10.1007/s10853-010-4480-x
  2. S. Kurosu, H. Matsumoto and A. Chiba, "Grain refinement of biomedical Co-27Cr-5Mo-0.16N alloy by reverse transformation", Mater. Lett. 64 (2010) 49. https://doi.org/10.1016/j.matlet.2009.10.001
  3. K. Hagihara, T. Nakano and K. Sasaki, "Anomalous strengthening behavior of Co-Cr-Mo alloy single crystals for biomedical applications", Scripta Mater. 123 (2016) 149. https://doi.org/10.1016/j.scriptamat.2016.06.016
  4. R. Rosentahal, B.R. Cardoso, I.S. Bott, R.P.R. Paranhos and E.A. Carvalho, "Phase characterization in as-cast F-75 Co-Cr-Mo-C alloy", J. Mater. Sci. 45 (2010) 4021. https://doi.org/10.1007/s10853-010-4480-x
  5. M. Podrez-Radziszewska, K. Haimann, W. Dudzinski and M. Morawska-Soltysik, "Characteristic of intermetallic phases in cast dental CoCrMo alloy", Archives of Foundary Engineering 10 (2010) 51.
  6. M. Niinomi, M. Nakai and J. Hieda, "Development of new metallic alloys for biomedical applications", Acta Biomater. 8 (2012) 3888. https://doi.org/10.1016/j.actbio.2012.06.037
  7. Y. Okazaki, "Effects of heat treatment and hot forging on microstructure and mechanical properties of Co-Cr-Mo alloy for surgical implants", Mater. Trans. 49 (2008) 817. https://doi.org/10.2320/matertrans.MRA2007274
  8. K. Rajan, "Thermodynamic assessment of heat treatment for a Co-Cr-Mo alloy", J. Mater. Sci. 18 (1983) 257. https://doi.org/10.1007/BF00543833
  9. H.S. Dobbs and J.L.M. Robertson, "Heat treatment of cast Co-Cr-Mo for orthopaedic implant use", J. Mater. Sci. 18 (1983) 391. https://doi.org/10.1007/BF00560627
  10. K.P. Gupta, "The Co-Cr-Mo (Cobalt-Chromium-Molybdenum) system", J. Phase Equilib. Diff. 26 (2005) 87. https://doi.org/10.1007/s11669-005-0071-y
  11. J.V. Giacchi, C.N. Morando, O. Fornaro and H.A. Palacio, "Microstructural characterization of as-cast biocompatible Co-Cr-Mo alloys", Mater. Charact. 62 (2011) 53. https://doi.org/10.1016/j.matchar.2010.10.011
  12. J.V. Giacchi, O. Fornaro and H.A. Palacio, "Microstructural characterization during solution treatment of Co-Cr-Mo-C biocompatible alloys", Mater. Charact. 68 (2012) 49. https://doi.org/10.1016/j.matchar.2012.03.006