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THE SEQUENTIAL ATTAINABILITY AND

ATTAINABLE ACE

Buhyeon Kang

Abstract. For any non-negative real number ε0, we shall introduce
a concept of the ε0-dense subset of Rm. Applying this concept, for
any sequence {εn} of positive real numbers, we also introduce the
concept of the {εn}-attainable sequence and of the points of {εn}-
attainable ace in the open subset of Rm. We also study the charac-
teristics of those sequences and of the points of {εn}-dense ace. And
we research the conditions that an {εn}-attainable sequence has no
{εn}-attainable ace. We hope to reconsider the social consideration
on the ace in social life by referring to these concepts about the aces.

1. Introduction

In this section, we briefly introduce the concept of the ε0-dense subset
in an open subset of Rm which we studied in [5]. Let’s denote by B(x, ε)
(resp. B(x, ε)) the open (resp. closed) ball in Rm with radius ε and
center at x.

Definition 1.1. Let ε0 ≥ 0 be any, but fixed, non-negative real
number. If D is a non-empty subset of Rm then a point a ∈ Rm is an
ε0-accumulation point of D if and only if B(a, ε)∩ (D− {a}) 6= ∅ for all
positive real number ε > ε0. And we denote by D′(ε0) the set of all the
ε0-accumulation points of D in Rm.
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Definition 1.2. Let ε0 ≥ 0 and E be a non-empty open subset of
Rm. A subset D ⊆ E is called an ε0-dense subset of E if and only if
E ⊆ D′(ε0) ∪D. In this case, we call that D is ε0-dense in E.

Proposition 1.3. Let D be a subset of a non-empty open subset E
in Rm and ε0 ≥ 0 be any, but fixed, non-negative real number. Then
D is ε0−dense in E if and only if E ⊆ ∪

b∈D
B(b, ε) for each positive real

number ε > ε0.

Proof. (⇒) Suppose that D is ε0−dense in E and let any positive real
number ε > ε0 be given. For any vector a ∈ E, if a ∈ D then we are done
since a ∈ B(a, ε). On the other hand, suppose that a ∈ E −D. Since D
is ε0−dense in E and ε > ε0, we must have B(a, ε)∩(D−{a}) 6= ∅. Thus
there exists an element b ∈ D such that b ∈ B(a, ε). This immediately
implies that a ∈ B(b, ε). Hence we have

a ∈ B(b, ε) ⊆ B(b, ε) ⊆ ∪
b∈D

B(b, ε).

(⇐) Let any member a ∈ E be given. And let any ε > ε0 be given. If a ∈
D then we are done since a ∈ D′(ε0)∪D. Suppose that a ∈ E−D. Since

E ⊆ ∪
b∈D

B(b, ε0 + ε−ε0
2

) and ε0 + ε−ε0
2

> ε0, we have a ∈ B(bε, ε0 + ε−ε0
2

)

for some element bε ∈ D. Thus we have bε ∈ B(a, ε0 + ε−ε0
2

). Since

ε0 + ε−ε0
2

< ε0 + ε − ε0 = ε, we have bε ∈ B(a, ε) which implies that
B(a, ε) ∩ (D − {a}) 6= ∅ since this set contains the element bε ∈ D
and bε 6= a. Therefore, we must have a ∈ D′(ε0) which completes the
proof.

We have so far considered about the fixed value of ε0. From now on,
we will think about changing values of ε0.

2. The sequentially attainable set in Rm

Now let’s study about the concepts of the sequentially attainable (or
dense) sequence and the sequentially attainable (or dense) subsets in
Rm and investigate the shape of those sequences and sets. Let α =
(α1, . . . , αm) ∈ Rm and ε be any non-negative real number. Let’s denote
by C(α, ε) = {x ∈ Rm : |xk − αk| < ε, k = 1, 2, 3, . . . ,m} and C(α, ε) =
{x ∈ Rm : |xk − αk| ≤ ε, k = 1, 2, 3, . . . ,m} the open and closed m-
dimensional cube in Rm.
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Definition 2.1. Let a non-negative real number ε1 be given. For a
given point a ∈ Rm, a point b ∈ Rm is an ε1−adherent point of a if and
only if b ∈ C(a, ε) for all ε > ε1. And a point b ∈ Rm is an ε1−isolated
point of a if and only if b /∈ C(a, ε′) for some positive real number ε′ > ε1.

Note that a point b ∈ Rm is an ε1−adherent point of a if and only if
b ∈ C(a, ε1).

Definition 2.2. Let {εn} be any, but fixed, sequence of non-negative
real numbers. For a given sequence {an} in Rm, a point b ∈ Rm is an
{εn}−adherent point of {an} if and only if there exists a natural number
n0 ∈ N such that b is an εn0−adherent point of an0 . And a point b ∈ Rm

is an {εn}−isolated point of the sequence {an} if and only if b is an εn−
isolated point of an for each natural number n ∈ N .

Let’s denote by ADH({an}, {εn}) the set of all the {εn}−adherent
points of {an}.

Definition 2.3. Let {εn} be any, but fixed, sequence of positive real
numbers and E be any non-empty and open subset ofRm. We define that
a sequence {an} of the elements of E is an {εn}− attainable sequence
in E if and only if E ⊆ ADH({an}, {εn}), i.e., every point of E is an
{εn}−adherent point of the sequence {an}. In this case, the ordered pair
({an}, {εn}) is called a sequentially attainable pair of E.

Note that E can be a proper subset of ADH({an}, {εn}) in the defi-
nition just above.

Definition 2.4. Let {εn} be any, but fixed, sequence of positive real
numbers and E be any non-empty and open subset of Rm. We define
that E is an {εn}− sequentially attainable set if and only if there is a
sequence {an} of the elements of E such that {an} is an {εn}− attainable
sequence in E.

Lemma 2.5. Let {εn} be any, but fixed, sequence of positive real
numbers and let {an} be a given sequence in Rm. Then a point b ∈ Rm

is an {εn}−adherent point of {an} if and only if b ∈ ∪
n∈N

C(an, εn). Hence

ADH({an}, {εn}) = ∪
n∈N

C(an, εn).

Proof. For each natural number n ∈ N , b is an εn−adherent point
of an if and only if b ∈ C(an, ε) for each positive real number ε > εn.
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Since the last statement holds if and only if b ∈ C(an, εn), the result
follows.

Proposition 2.6. Let {εn} be any, but fixed, sequence of positive
real numbers and let {an} be a given sequence in an open subset E of
Rm. The sequence {an} is {εn}−attainable in E if and only if E ⊆
∪
n∈N

C(an, εn).

Proof. This follows immediately from the lemma 2.5.

Note that the volume of the closed m-dimensional cube C(an, εn) is
given by

Vol
(
C(an, εn)

)
= 2mεmn .

Lemma 2.7. Let E be a nonempty open subset of Rm. Then E is
the union of a countable disjoint collection of half-open m-dimensional
cubes, each of which is of the form

{(x1, · · · , xm) : ji2
−k ≤ xi < (ji + 1)2−k, i = 1, 2, · · · ,m}

for some integers j1, j2, · · · , jm and some natural number k.

Proof. For each natural number k, let Ck be the set of all the m-
dimensional cubes of the form

{(x1, · · · , xm) : ji2
−k ≤ xi < (ji + 1)2−k, i = 1, 2, · · · ,m}

with arbitrary integers j1, j2, · · · , jm. It is clear that each Ck is countable
and a partition of Rm. Moreover, if k1 < k2 then each m-dimensional
cube in Ck2 is contained in some member of Ck1 . Now, for the given open
subset E of Rm, let’s construct another collection D of m-dimensional
cubes inductively as follows. Let D be the empty set at the first step.
At the k-th step, let’s add to D those m-dimensional cubes in Ck that
are included in E but are disjoint from all the m-dimensional cubes
contained in D at earlier steps. Then D is clearly a countable disjoint
collection of m-dimensional cubes whose union is included in E. Hence
we need only to verify that E is a subset of the union ∪D. Let x be
any element of E. Since E is an open subset of Rm, the m-dimensional
cube in Ck which contains x is included in E if k is sufficiently large.
Let k0 be the smallest number of such natural numbers k. Then the
m-dimensional cube in Ck0 that contains x belongs to D. Therefore, x
belongs to the union of the cubes in D.
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Theorem 2.8. Let {εn} be any, but fixed, sequence of positive real
numbers and let E be a nonempty open subset of Rm. If Vol(E) >
2m
∑∞

n=1 ε
m
n , then there exists no sequence {an} in E such that {an} is

{εn}− attainable in E. Or equivalently, if E is an {εn}− sequentially
attainable set then Vol(E) ≤ 2m

∑∞
n=1 ε

m
n . And the converse is not true

in general.

Proof. Since the volume of the closed m-dimensional cube C(an, εn)

is 2mεmn , if Vol(E) > 2m
∑∞

n=1 ε
m
n then no form of the union

∞
∪
n=1

C(an, εn)

shall contain the set E. On the other hand, in order to prove that
the converse is not true in general, let {εn} be a sequence of positive
real numbers such that 2m

∑∞
n=1 ε

m
n < ∞. Since limn→∞εn = 0, the

maximum εM = max{εn : n ∈ N} exists. Let’s choose a natural number
K0 ∈ N so large that K0 > 3εM + 3. And choose a sequence {bn} of
vectors in Rm such that bn = ((n−1)K0, 0, · · · , 0) ∈ Rm for each natural
number n ∈ N . Let E be the open subset given by

E =
∞
∪
n=1

C(bn, εn)− {bM}.

Then we have Vol{E} = 2m
∑∞

n=1 ε
m
n <∞. But suppose that there exists

a sequence {an} in E such that {an} is an {εn}− attainable sequence in

E. Then we have E ⊆
∞
∪
n=1

C(an, εn). Since bM /∈ E, we have an 6= bM for

all natural number n ∈ N . Hence there are at least two closed cubes, say
C(ap, εp) and C(aq, εq), which have the non-empty intersections with the
cube C(bM , εM) since εM is the maximum. If εp = εM or εq = εM then
∪

n6=p,q
C(an, εn) must contain the set E−C(bM , εM). But this is impossible

since

Vol{ ∪
n6=p,q

C(an, εn)} =
∑
n6=p,q

2mεmn <
∑
n6=M

2mεmn = Vol{E − C(bM , εM)}.

And if εp 6= εM for all εp such that C(ap, εp) ∩C(bM , εM) 6= ∅ then there
is a term εr such that εr < εM and C(br, εr) ⊆ C(aM , εM) in the best
situations since the cube C(aM , εM) can not contain more than one cube
in E. Hence ∪

n6=M
C(an, εn) must contain the set E − C(br, εr) which is

also impossible since

Vol{E} =
∑
n∈N

Vol{C(an, εn)} and Vol{C(ar, εr)} < Vol{C(aM , εM)}.
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Hence there is no {εn}-attainable sequence in E.

Theorem 2.9. Let {εn} be a sequence of positive real numbers which
satisfies the condition lim

n→∞
εn = ε0 > 0. Then any non-empty open subset

E of Rm is an {εn}-sequentially attainable set.

Proof. Since lim
n→∞

εn = ε0 and ε0
2
> 0, there are infinitely many natural

numbers n1 < n2 < n3 < · · · < nk < . . . such that ∀k ∈ N ⇒ ε0 − ε0
2
<

εnk
. Since E is an open subset of Rm and E ∩Qm is countable, there is

a sequence {bk} in E such that E ∩ Qm = {b1, b2, b3, . . . , bk, . . . }. Then

we have E ⊆
∞
∪
k=1

C(bk,
ε0
2

). Set n0 = 0. Then, for each natural number

n ∈ N , there is a unique non-negative integer k such that nk−1 + 1 ≤
n ≤ nk. Now, for each natural number k ∈ N , choose a sequence {an}
in E such that an = bk whenever nk−1 + 1 ≤ n ≤ nk. Then {an}∞n=1 is
an infinite sequence in E and ank

= bk for each natural number k ∈ N .
Thus we have

E ⊆
∞
∪
k=1

C(bk,
ε0
2

) =
∞
∪
k=1

C(ank
,
ε0
2

)

⊆
∞
∪
k=1

C(ank
, εnk

)

⊆
∞
∪
n=1

C(an, εn)

⊆
∞
∪
n=1

C(an, εn).

When the dimension m = 1, we have the following proposition.

Proposition 2.10. Let {εn} be a sequence of positive real numbers.

If
∞∑
n=1

εn = ∞ then any non-empty open subset E of the real number

system R is an {εn}-sequentially attainable set. And the converse is also
true.

Proof. Let any non-empty open subset E of the real number system
R be given. By lemma 2.7, E can be represented as the union E =
∞
∪
n=1

(cn, dn] of a disjoint collection of the half-open intervals (cn, dn]. For

the interval (c1, d1], choose a real number b1 = c1 + ε1. Now choose a
sequence {bn} such that bn+1 = bn + εn + εn+1 for each natural number
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n ∈ N . Then we have (c1, d1] ⊆
∞
∪
i=1
C(bi, εi) and Vol

{ ∞
∪
i=1
C(bi, εi)

}
=

2
∞∑
i=1

εi. Since
∞∑
i=1

εi =∞, there is a natural number n1 such that (c1, d1] ⊆
n1∪
i=1

[bi, εi]. Moreover, the minimal natural number, say m1, of such n′1s

must exist since (c1, d1] is bounded. Now choose a sequence {ai} in E
such that ai = bi for each natural number i = 1, 2, · · · ,m1 − 1 and

am1 =

{
bm1 if bm1 ∈ E
d1 if bm1 /∈ E.

Then we have (c1, d1] ⊆
m1∪
i=1
C(ai, εi) with {ai}m1

i=1 ⊆ E. Since we also

have
∞∑

i=m1+1

εi = ∞, we can prove by the same manner as the above

that (c2, d2] ⊆
m1+m2∪
i=m1+1

C(ai, εi) for some finite sequence {ai} in E and

some natural number m2. Continuing this process, we can prove that

E =
∞
∪
n=1

(cn, dn] ⊆
∞
∪
n=1

C(an, εn) for some infinite sequence {an} in E.

Hence E is an {εn}-sequentially attainable set. And the converse is
obviously true since the set R is {εn}-sequentially attainable.

On the other hand, we have the following results.

Lemma 2.11. If E is any non-empty open subset of Rm then E is
{ 1
n1/m}-sequentially attainable.

Proof. Since E is an open subset of Rm, E can be represented as
the union of the countable disjoint collection of the half-open cubes
C1, C2, · · · , Cn, · · · in Rm. Let’s choose a natural number n1 > 2m so
large that 1

(n1)1/m
is less than the length of the edge of the cube C1.

Then the closure C1 can be written as the union of a finite collection, say
D1, · · · , Dk, of closed cubes whose common size is 1

(n1)1/m
× 1

(n1)1/m
×· · ·×

1
(n1)1/m

(m terms) and with centers at C1. But D1 is the union of the two

m-dimensional rectangles whose common size is
(

1
2

1
(n1)1/m

)
× 1

(n1)1/m
×

· · · × 1
(n1)1/m

. And the m-dimensional rectangle of this size consists of

2m−1 m-dimensional cubes of the size 1
2

1
(n1)1/m

× 1
2

1
(n1)1/m

×· · ·× 1
2

1
(n1)1/m

.
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Hence we have

D1 = C(a1,
1

2× 2

1

(n1)1/m
) ∪ · · · ∪ C(a2m−1 ,

1

2× 2

1

(n1)1/m
)

⊆ C(a1,
1

[4m(n1 − 2m−1 + 1)]1/m
) ∪ · · · ∪ C(a2m−1 ,

1

(4mn1)1/m
)

for some elements a1, a2, · · · , a2m−1 ∈ E. Note that the last inclusion is
meaningful since 4mn1−4m(n1 − 2m−1 + 1) ≥ 1. On the other hand, the
m-dimensional rectangle D2 is the union of 2m−1 × 2m numbers of the
m-dimensional cubes of the size 1

2×2
1

(n1)1/m
× · · · × 1

2×2
1

(n1)1/m
(m terms).

Hence

D2 = C(a(2m−1+1),
1

2× 2× 2

1

(n1)1/m
) ∪ · · · ∪

C(a(2m−1+2m−1×2m),
1

2× 2× 2

1

(n1)1/m
)(2m−1 × 2mterms)

⊆ C(a(2m−1+1),
1

(23mn1 − 2m−1 × 2m + 1)1/m
) ∪ · · · ∪

C(a(2m−1+2m−1×2m),
1

(23mn1)1/m
)

for some 2m−1 × 2m elements a(2m−1+1), · · · , a(2m−1+2m−1×2m) ∈ E. Note
that the last inclusion makes sense since 23mn1− 2m−1× 2m + 1 ≥ 4mn1.
Continuing this process, we can show that the m-dimensional rectangle
Dk is the union of 2m−1 × (2m)k−1 numbers of the m-dimensional cubes
of the size 1

2k
1

(n1)1/m
× · · · × 1

2k
1

(n1)1/m
(m terms). Hence

Dk = C(a·,
1

2× 2k
1

(n1)1/m
) ∪ · · · ∪

C(a·,
1

2× 2k
1

(n1)1/m
)(2m−1 × (2m)k−1terms)

⊆ C(a·,
1

(2(k+1)mn1 − 2m−1 × (2m)k−1 + 1)1/m
) ∪ · · · ∪

C(a·,
1

(2(k+1)mn1)1/m
)

for some elements a·’s in E. Note that the last inclusion is meaningful
since 2(k+1)mn1−2m−1× (2m)k−1 + 1 ≥ 2kmn1. Hence the m-dimensional
closed cube C1 can be contained in the union of a finite collection of
m-dimensional cubes of the form C(·, 1

n1/m ) with centers at E. Now
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we have proved that there is a natural number M1 such that C1 ⊆
M1∪
n=1

C(bn,
1

n1/m ) for some sequence {bn} in E. On the other hand, if we

choose a natural number n2 so large that 1
(n2)1/m

is less than the length

of the edge of the cube C2 and n2 > M1, then we can prove by the
similar manner as the above that there is a natural number M2 such

that C2 ⊆
M2∪

n=M1+1
C(bn,

1
n1/m ) for some sequence {bn} in E. Continuing

this process, we have a sequence {bn} in E such that E ⊆
∞
∪
n=1

C(bn,
1

n1/m ).

Hence E is { 1
n1/m}-sequentially attainable.

Thus we have the following proposition.

Proposition 2.12. Let {εn} be a sequence of positive real numbers
which satisfies the condition lim

n→∞

(
n1/mεn

)
> 0. Then any non-empty

open subset E of Rm is {εn}-sequentially attainable.

Proof. Since lim
n→∞

(
n1/mεn

)
= α > 0, there is a natural number K ∈ N

such that n ≥ K ⇒ n1/mεn ≥ α
2
. Hence we have

∃K ∈ N such that n ≥ K ⇒ εn ≥
α/2

n1/m
.

By the proof of the lemma just above, any non-empty open subset E

of Rm is also { α/2

n1/m}∞n=K-sequentially attainable. Thus any non-empty
open subset E of Rm is {εn}-sequentially attainable since the cube of

radius α/2

n1/m is contained in the cube of radius εn for each natural number
n ≥ K.

Note that we have the following remark when the dimension m > 1.

Remark 2.13. It is an open problem that every open subset E is

{εn}-sequentially attainable if
∞∑
n=1

εmn =∞ when the dimension m > 1.

But we have the following theorem.

Theorem 2.14. Let {εn} be an infinite and bounded sequence of
positive real numbers. Suppose that any non-empty open subset E of
Rm is an {εn}−sequentially attainable set. Then, for each sequence {ap}
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of elements of Rm and each sequence {δp} of positive real numbers, there
is a partition

{{(n1)k}N1
k=1, {(n2)k}N2

k=1, · · · , {(np)k}
Np

k=1, · · · }

of the set N of all the natural numbers for some Np ∈ N ∪ {∞}, p =

1, 2, 3, · · · and there are sequences {d(np)k
}Np

k=1 of elements of the cube
C(ap, δp) for every p ∈ N such that

C(ap, δp) ⊆
Np

∪
k=1

C(d(np)k
, ε(np)k

)

for each natural numbers p ∈ N. And the converse is also true.

Proof. Let any sequence {ap} of elements of Rm and any sequence
{δp} of positive real numbers be given. And set εM = sup{εp|p ∈ N}
and let’s denote by e1 = (1, 0, · · · , 0) the unit vector of Rm. Now choose
a sequence {Dp} of cubes in Rm as follows.

D1 = C(0, δ1)

D2 = C([3εM + δ1 + δ2] e1, δ2)

D3 = C([6εM + δ1 + 2δ2 + δ3] e1, δ3)

· · ·
Dp = C([3(p− 1)εM + δ1 + 2(δ2 + δ3 + · · ·+ δp−1) + δp] e1, δp)

· · ·

Then E =
∞
∪
p=1
Dp is a non-empty open subset of Rm since it is the

union of the set of a countable collection of the open cubes. Hence
E is {εp}−sequentially attainable. Thus there is a sequence {bp} of

elements of E such that E ⊆
∞
∪
p=1
C(bp, εp). Hence there is a finite or

infinite subsequence {b(np)k}
Np

k=1 of {bp} such that

Dp ∩ {bp : p ∈ N} = {b(np)k |k ∈ {1, 2, 3, · · · , Np}}.

Here Np =∞ if it is an infinite subsequence of {bp}. Since {Dp : p ∈ N}
is a collection of the mutually disjoint open cubes, the set

{{(np)k|k ∈ {1, 2, 3, · · · , Np}} : p ∈ N}

is a collection of mutually disjoint subsets of N . Since if there is a natural

number q ∈ N such that q /∈
∞
∪
p=1
{(np)k|k ∈ {1, 2, 3, · · · , Np}} then we
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need only to add the cube C(bq, εq), we may assume that the set

{{(np)k|k ∈ {1, 2, 3, · · · , Np}} : p ∈ N}

is a countable partition of the set N of all the natural numbers. More-

over, we have Dp ⊆
Np

∪
k=1

C(b(np)k
, ε(np)k

) for each p ∈ N . Now put

d(np)k
= b(np)k

− [3(p− 1)εM + δ1 + 2(δ2 + · · ·+ δp−1) + δp] e1 + a(np)k

for each p ∈ N and k ∈ N. Then we have

C(ap, δp) ⊆
Np

∪
k=1

C(d(np)k
, ε(np)k

)

for each p ∈ N since it is the translation of Dp by the vector

ap − [3(p− 1)εM + δ1 + 2(δ2 + · · ·+ δp−1) + δp] e1

for each p ∈ N .
In order to prove the statement of the converse in this theorem, sup-

pose that the sequence {εp} satisfies the conclusion in this theorem. Let
any non-empty open subset E of Rm be given. Since Rm is a second
countable space and the set of all the open cubes in Rm forms a basis for
the usual topology on Rm, E may be written as the union of a countable
collection {Cp} of the open cubes. Hence there is a sequence {ap} of the
elements of Rm and there is another sequence {δp} of positive real num-
bers such that Cp = C(ap, δp) for each p ∈ N . Hence, by assumption,
there is a partition

{{(n1)k}N1
k=1, {(n2)k}N2

k=1, · · · , {(np)k}
Np

k=1, · · · }

of the set N of all the natural numbers for some Np ∈ N ∪ {∞}, p =

1, 2, 3, · · · and there are sequences {d(np)k
}Np

k=1 of elements of the cube
C(ap, δp) for all p ∈ N such that

C(ap, δp) ⊆
Np

∪
k=1

C
(
d(np)k

, ε(np)k

)
for every natural numbers p ∈ N. Thus we have

E =
∞
∪
p=1
C(ap, δp) ⊆

∞
∪
p=1

Np

∪
k=1

C
(
d(np)k

, ε(np)k

)
=
∞
∪
p=1
C (dp, εp) .

Since each dp is an element of E for each p ∈ N , this implies that E is
an {εp}-sequentially attainable set.
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Note that if {εp} is a sequence such that lim
p→∞

(
p1/mεp

)
= α > 0 then

all the numbers of terms Np in the theorem above can be chosen as the
natural numbers in view of the proposition 2.12.

Corollary 2.15. Let {εp} be an infinite and bounded sequence of
positive real numbers. (1) If any non-empty open subset E of Rm is an
{εp}∞p=1−sequentially attainable set then any non-empty open subset E
of Rm is an {εp}∞p=K−sequentially attainable set for each natural number
K ∈ N . (2) If there is a natural number K ∈ N such that any non-
empty open subset E of Rm is an {εp}∞p=K−sequentially attainable set
then any non-empty open subset E of Rm is an {εp}∞p=1−sequentially
attainable set.

Proof. (1) Suppose that any non-empty open subset E of Rm is an
{εp}∞p=1−sequentially attainable set and let any natural number K ∈ N
be given. And let any non-empty open subset E of Rm be given. Since
Rm is a second countable space and the set of all the open cubes in Rm

forms a basis for the usual topology on Rm, E may be written as the
union of a countable collection {Cp} of the open cubes. Hence there is a
sequence {ap} of the elements of Rm and there is another sequence {δp}
of positive real numbers such that Cp = C(ap, δp) for each p ∈ N . Now
consider a sequence {Dp} of cubes defined by the relation

Dp = Cq if (q − 1)K + 1 ≤ p ≤ qK

for each natural number q = 1, 2, · · · . Then the centers of {Dp} forms
an infinite sequence of vectors in Rm and the radii of {Dp} forms an
infinite sequence of positive real numbers. Hence by the theorem above,
there is a partition

{{(n1)k}N1
k=1, {(n2)k}N2

k=1, · · · , {(np)k}
Np

k=1, · · · }
of the set N for some Np ∈ N ∪ {∞}, p = 1, 2, 3, · · · and there are

sequences {d(np)k
}Np

k=1 of elements of the cube Dp for all p ∈ N such that

Dp ⊆
Np

∪
k=1

C(d(np)k
, ε(np)k

)

for every natural numbers p ∈ N. Since the subscripts (np)k form a
partition of N and

D1 = D2 = · · · = DK ⊆
Np

∪
k=1

C(d(np)k
, ε(np)k

)
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for all p = 1, 2, · · · , K, there must exist a natural number 1 ≤ p1 ≤ K
such that (np1)k ≥ K for all k ∈ N . Similarly, since the subscripts form
a partition of N and, for each q ∈ N ,

D(q−1)K+1 = D(q−1)K+2 = · · · = DqK ⊆
Np

∪
k=1

C(d(np)k
, ε(np)k

)

for all p = (q−1)K+1, (q−1)K+2, · · · , qK, there must exist a natural
number (q− 1)K+ 1 ≤ pq ≤ qK such that (npq)k ≥ K for all k ∈ N and
for each q ∈ N . Now we have

E = ∪Cp =
∞
∪
q=1
Dpq ⊆

∞
∪
q=1

Npq

∪
k=1

C(d(npq )k
, ε(npq )k

).

Therefore, E is an {εp}∞p=K−sequentially attainable set. (2) It is obvious
since we need only to add the remaining terms.

3. The sequential dense-ace in Rm

Let’s denote by {an}Kn=1 a finite or infinite sequence with K ∈ N ∪
{∞}. For each natural number n0 ∈ N , let’s denote by {an}n6=n0 the
finite or infinite sequence which is obtained from {an}Kn=1 by removing
the term an0 . Note that the (n0+1)st term an0+1 in {an}Kn=1 is the n0−th
term in {an}n 6=n0 . Moreover, let’s denote the maximum norm of a vector
x ∈ Rm by ‖x‖∞ = max{|xi| : i = 1, 2, · · · ,m}. In this section, we study
some properties of the attainable (or dense) sequence and introduce a
concept of the sequentially attainable (or dense) ace .

Definition 3.1. Let {εn}Kn=1 be any finite or infinite sequence of
positive real numbers with K ∈ N ∪ {∞}. And let E be a non-empty
open subset of Rm. A finite or infinite sequence {an}Kn=1 in E is called an

{εn}-attainable (or dense) sequence in E if and only if E ⊆
K
∪
n=1

C(an, εn).

Definition 3.2. Let {εn}Kn=1 be any finite or infinite sequence of
positive real numbers with K ∈ N ∪ {∞} and E be a non-empty open
subset of Rm. Suppose that a finite or infinite sequence {an}Kn=1 in E is
an {εn}-attainable sequence in E. A term an0 is called an {εn}-attainable
ace of the sequence {an}Kn=1 in E if and only if E 6⊆ ∪

n6=n0

C(an, εn). In this

case, we call the ordered pair (an0 , εn0) the pair of the {εn}-attainable
ace of {an}Kn=1 in E.
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Let’s denote by AaopE({an}, {εn}) the set of all the pair (an0 , εn0) of
the {εn}-attainable ace of {an}Kn=1 in E.

Lemma 3.3. Let {εn}Kn=1 be any sequence of positive real numbers
with K ∈ N ∪ {∞}, E be a non-empty open subset of Rm and {an}Kn=1

be an {εn}Kn=1-attainable sequence in E. Then a term an0 is an {εn}-
attainable ace of the sequence {an}Kn=1 in E if and only if there exists
x ∈ E such that x ∈ C(an0 , εn0) and ‖x−an‖∞ > εn for all n ∈ N−{n0}.

Proof. Since E ⊆
K
∪
n=1

C(an, εn), we have the following equivalent state-

ments:

an0 is an {εn}Kn=1 − attainable ace of {an}Kn=1.

⇔ E 6⊆ ∪
n6=n0

C(an, εn)

⇔ ∃x ∈ E s.t. x/∈ ∪
n6=n0

C(an, εn) and x ∈ C(an0 , εn0)

⇔ ∃x ∈ E s.t.
[
∀n ∈ {1, 2, · · · , K} − {n0} ⇒ x/∈C(an, εn)

]
∧ x ∈ C(an0 , εn0)

⇔ ∃x ∈ E s.t. x ∈ C(an0 , εn0) ∧ [∀n 6= n0 ⇒ ‖x− an‖∞ > εn]

This completes the proof.

Note that if {an}Kn=1 is an {εn}Kn=1-attainable sequence in E then an0

is not an {εn}-attainable ace of the sequence {an}Kn=1 in E if and only if
∀x ∈ E ∩ C(an0 , εn0),∃n 6= n0 s.t. ‖x− an‖∞ ≤ εn. Moreover, we have
the following lemma.

Lemma 3.4. Let {εn}Kn=1 be any sequence of positive real numbers
with K ∈ N ∪ {∞}, E be a non-empty open subset of Rm and {an}Kn=1

be an {εn}Kn=1-attainable sequence in E. Then a term an0 is not an
{εn}-attainable ace of {an}Kn=1 in E if and only if E ∩ C(an0 , εn0) ⊆
∪

n∈An0

C(an, εn). Here An0 = {n ∈ {1, 2, · · · , K} − {n0} : C(an0 , εn0) ∩

C(an, εn) 6= ∅}.
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Proof. We have the following equivalent statements:

an0 is not an {εn}Kn=1 − attainable ace of {an}Kn=1.

⇔ E ⊆
K
∪
n=1

C(an, εn) and E⊆ ∪
n6=n0

C(an, εn)

⇔ E ⊆
K
∪
n=1

C(an, εn) and E ∩ C(an0 , εn0)⊆ ∪
n 6=n0

C(an, εn)

⇔ E ⊆
K
∪
n=1

C(an, εn) and E ∩ C(an0 , εn0)⊆ ∪
n∈An0

C(an, εn)

Since {an}Kn=1 is an {εn}Kn=1-attainable sequence in E, this implies that
an0 is not an {εn}Kn=1-attainable ace of {an}Kn=1 if and only if

E ∩ C(an0 , εn0)⊆ ∪
n∈An0

C(an, εn).

Lemma 3.5. Let {εn}Kn=1 be any sequence of positive real numbers
with K ∈ N ∪ {∞}, E be a non-empty open subset of Rm and {an}Kn=1

be an {εn}Kn=1-attainable sequence in E.

(1) If (an1 , εn1), (an2 , εn2) ∈ AaopE({an}, {εn}) and an1 = an2 then

εn1 = εn2 and n1 = n2.

(2) If (an1 , εn1) ∈ AaopE({an}, {εn}) and an1 = an2 for some n2 6= n1

then εn1 > εn2 .

Proof. (1) Assume that εn1 6= εn2 . Then we first have n1 6= n2. Now
suppose that εn1 > εn2 . Since (an2 , εn2) ∈ AaopE({an}, {εn}), we have

E⊆
K
∪
n=1

C(an, εn) and E 6⊆ ∪
n 6=n2

C(an, εn).

But this is impossible since C(an2 , εn2) ⊆ C(an1 , εn1) and C(an1 , εn1) is
still a member of the collection in the last union. Similarly, suppose that
εn1 < εn2 . Since (an1 , εn1) ∈ AaopE({an}, {εn}), we have

E⊆
K
∪
n=1

C(an, εn) and E 6⊆ ∪
n 6=n1

C(an, εn).

But this is also impossible since C(an1 , εn1) ⊆ C(an2 , εn2) and C(an2 , εn2)
is still a member of the collection in the last union. Hence we have
an1 = an2 and εn1 = εn2 . And such a proof just above also shows that
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n1 = n2. (2) Suppose that (an1 , εn1) ∈ AaopE({an}, {εn}) and an1 =
an2 for some n2 6= n1. Then we have

E⊆
K
∪
n=1

C(an, εn) and E 6⊆ ∪
n 6=n1

C(an, εn).

Since C(an2 , εn2) is still a member of the collection in the last union, it
is impossible that εn1 ≤ εn2 . Hence we have εn1 > εn2 .

In view of the lemma just above, the set of all the points of the
{εn}-attainable ace of {an} in E is well-defined and we denote it by
AapE({an}, {εn}).

Definition 3.6. Let {εn}Kn=1 be a sequence of positive real numbers
with K ∈ N ∪ {∞}, E be a non-empty open subset of Rm and {an}Kn=1

be an {εn}Kn=1-attainable sequence in E. If an0 ∈ AapE({an}, {εn}) then
an element b ∈ E is called an {εn}Kn=1-replaceable ace of an0 in E if
and only if the sequence, denoted by {an}(bn0 )

, which is obtained from

{an}Kn=1 by replacing the term an0 by b is also an {εn}Kn=1-attainable
sequence in E. And we denote by RapE({an}, {εn};n0) the set of all the
points of {εn}Kn=1-replaceable ace of an0 in E.

Proposition 3.7. Let πk be the projection map from Rm onto R such
that πk(x) = xk for each k = 1, 2, · · · ,m. Let {εn}Kn=1 be a sequence
of positive real numbers with K ∈ N ∪ {∞} and E be a non-empty
open subset of Rm. Suppose that an0 is an {εn}Kn=1-attainable ace of the
{εn}Kn=1-attainable sequence {an}Kn=1. If we set

S = E ∩
[
C(an0 , εn0)− ∪

n6=n0

C(an, εn)

]
then

RapE({an}, {εn};n0)

= E ∩
{

m

Π
k=1

[sup πk(S)− εn0 , inf πk(S) + εn0 ]

}
.

Here
m

Π
k=1

[εn0 − supπk(S), εn0 + inf πk(S)] denotes the cartesian product

of the closed intervals.
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Proof. Since {an}Kn=1 is an {εn}Kn=1-attainable sequence in E, E ⊆
K
∪
n=1

C(an, εn). But we have

K
∪
n=1

C(an, εn) =

{
∪

n 6=n0

C(an, εn)

}
∪ C(an0 , εn0)

=

{
∪

n6=n0

C(an, εn)

}
∪
[
C(an0 , εn0)−

{
∪

n6=n0

C(an, εn)

}]
.

Hence we have

E =

[
E ∩

{
∪

n6=n0

C(an, εn)

}]
∪
(
E ∩

[
C(an0 , εn0)−

{
∪

n6=n0

C(an, εn)

}])
=

[
E ∩

{
∪

n6=n0

C(an, εn)

}]
∪ S.

Note that the set S 6= ∅ since an0 is an {εn}Kn=1-attainable ace. Since
the last union just above is the disjoint union and an0 ∈ S, we have
b ∈ RapE({an}, {εn};n0) if and only if b ∈ E and S ⊆ C(b, εn0). And
these hold if and only if

b ∈ E ∩
{

m

Π
k=1

[supπk(S)− εn0 , inf πk(S) + εn0 ]

}
.

Now we have our main theorem which provides a way to get rid of
the ace.

Theorem 3.8. (No Aces) Let {εn}∞n=1 be an infinite sequence of posi-
tive real numbers and {an}∞n=1 be an {εn}∞n=1-attainable sequence in Rm.

Suppose that M = sup{εn:n∈N}
inf{εn:n∈N} is finite. If AapRm({an}, {εn}) 6= ∅ then

{an}∞n=1 is not an { 1
2M
εn}∞n=1-attainable sequence in Rm. Or equiva-

lently, if {an}∞n=1 is an {εn}∞n=1-attainable sequence in Rm, then we have
AapRm({an}, {2Mεn}) = ∅.

Proof. Let an0 ∈ AapRm({an}, {εn}) 6= ∅. Then, by lemma 3.3, we
have

∃x ∈ Rm s.t. x ∈ C(an0 , εn0) ∧ [∀n 6= n0 ⇒ ‖x− an‖∞ > εn] .
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Now put α = inf{εn : n ∈ N} and β = sup{εn : n ∈ N}. Then M = β
α

.
Now the following two cases occur since M ≥ 1.

Case 1. The case where M = 1.
In this case, there exists ε0 > 0 such that εn = ε0 for all n ∈ N . Since

∀n 6= n0 ⇒ ‖x− an‖∞ > ε0,

there is a subset F ⊆ Rm such that C(x, ε0
2

) 6= F and

C(x,
ε0
2

) ⊆ F and F ∩
(
∪

n 6=n0

C(an,
ε0
2

)

)
= ∅.

Since C(x, ε0
2

) which has the same size with C(an0 ,
ε0
2

) is a proper subset

of F , this implies that F − C(an0 ,
ε0
2

) 6= ∅. Thus we have

Rm 6⊆
∞
∪
n=1

C(an,
ε0
2

) =
∞
∪
n=1

C(an,
εn
2

)

which implies that {an}∞n=1 is not an {1
2
εn}∞n=1-attainable sequence in

Rm.
Case 2. The case where M > 1.

Since ‖x− an‖∞ > εn for all n 6= n0, we have

C(x, εn −
εn

2M
) ∩
(
∪

n6=n0

C(an,
εn

2M
)

)
= ∅

for all n 6= n0. Since α ≤ εn for all n 6= n0, we have

C(x, α− α

2M
) ∩
(
∪

n6=n0

C(an,
εn

2M
)

)
= ∅.

But we have

α− α

2M
> α− α

M + 1
=

Mα

M + 1
=

β

M + 1
>

β

2M
≥ εn0

2M

since M > 1. Hence C(an0 ,
εn0

2M
) does not contain the cube C(x, α− α

2M
).

Therefore, we must have

Rm 6⊆
∞
∪
n=1

C(an,
εn

2M
).

Consequently, {an}∞n=1 is not an { εn
2M
}∞n=1-attainable sequence in Rm.

Finally, the last statement of this theorem is induced from the contra-
position of this statement.

The following example shows that the theorem above does not hold
for an open subset E of Rm in general.
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Example 3.9. Let’s choose an open subset

E = C((0, · · · , 0), 1) ∪ C((6, 0, · · · , 0), 1).

If we choose a sequence {a1, a2} of vectors so that a1 = (0, · · · , 0) and
a2 = (6, 0, · · · , 0) and a sequence {3, 3} of positive real numbers then
{a1, a2} is a {3, 3}-attainable sequence in E and AapE({a1, a2}, {3, 3}) =
{a1, a2}. But {a1, a2} is also a {1.5, 1.5}-attainable sequence in E and
AapE({a1, a2}, {6, 6}) = {a1, a2} 6= ∅.

We live in an age where the ace is everything. The ace is of course
important, but the ace himself will never live a happy life because he
will be tired. In some ways a society without aces might be a happier
society.
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