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TRIPLE CENTRALIZERS OF C∗-ALGEBRAS

Seyed Mohammad Davarpanah, Mohsen Erfanian Omidvar,
and Hamid Reza Moradi

Abstract. In this paper, we extend the concept of double central-
izer to triple centralizer and we show that, the triple centralizer is a
C∗-algebra. Some algebraic properties are investigated.

1. Introduction

An involution on an algebra A is a conjugate-linear map a −→ a∗ on
A , such that a∗∗ = a and (ab)∗ = b∗a∗ for all a, b ∈ A . The pair (A , ∗)
is called a ∗-algebra. A Banach ∗-algebra is a ∗-algebra A together with
a complete submultiplicative norm such that ‖a∗‖ = ‖a‖ (a ∈ A ). If,
in addition, A has a unit such that ‖1‖ = 1, we call A a unital Banach
∗-algebra. A C∗-algebra is a Banach ∗-algebra such that ‖a∗a‖ = ‖a‖2
(a ∈ A ).

The notion of double centralizers was introduced by Hochschild [5]
and by Johnson [4]. For a C∗-algebra A a linear mapping T

′
: A → A

is said to be left centralizer on A if T
′
(xy) = T

′
(x) y, for all x, y ∈ A .

Similarly, a linear mapping T
′′

: A → A such that T
′′

(xy) = xT
′′

(y)
for all x, y ∈ A , is called right centralizer on A . A double central-
izer on A is a pair

(
T

′
, T

′′)
, where T

′
is a left centralizer, T

′′
is a

right centralizer and xT
′
(y) = T

′′
(x) y for all x, y ∈ A . For exam-

ple,
(
T

′
c , T

′′
c

)
is a double centralizer, where T

′
c (x) = cx and T

′′
c (x) =

Received August 25, 2018. Revised December 16, 2018. Accepted December 17,
2018.

2010 Mathematics Subject Classification: 47C15,43A22, 42A45.
Key words and phrases: Triple centralizer, Multiplier algebra, C∗-algebra.
c© The Kangwon-Kyungki Mathematical Society, 2018.
This is an Open Access article distributed under the terms of the Creative com-

mons Attribution Non-Commercial License (http://creativecommons.org/licenses/by
-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduc-
tion in any medium, provided the original work is properly cited.

https://doi.org/10.11568/kjm.2018.26.4.799


800 S.M. Davarpanah, M.E. Omidvar, and H.R. Moradi

xc. The set of all double centralizers equipped with the multiplication(
T

′
1, T

′′
1

)
.
(
T

′
2, T

′′
2

)
=
(
T

′
1T

′
2, T

′′
2 T

′′
1

)
is an algebra.

We associate to each C∗-algebra A a certain unital C∗-algebraM (A )
which contains A as an ideal. This algebra is of great importance in
more advanced aspects of the theory, especially in certain approaches
to K-theory. In ( [7], Chapter 2), the concept of double centralizer is
studied. The importance of the study of double centralizers is that it is
unital. In this work, we generalized this notion for triplet

(
T

′
, T

′′
, T

′′′)
.

Some interesting properties and characterizations are introduced and
discussed.

For a comprehensive account on double centralizers and its various
applications we refer the reader to [2, 3, 6, 7].

2. Main Results

2.1. The triple centralizer algebra of a C∗-algebra. In concluding
this section, we state the following definition for their importance in the
material of our paper.

Definition 2.1. A triple centralizer for a C∗-algebra A is a triplet(
T

′
, T

′′
, T

′′′)
of bounded linear maps on A , such that for all x, y, z ∈ A

(2.1)

T
′
(x, y, z) = T

′
(x) yz, T

′′
(x, y, z) = xT

′′
(y) z, T

′′′
(x, y, z) = xyT

′′′
(z)

and
(2.2)

xT
′
(y) z = T

′′
(x) yz, xyT

′′
(z) = xT

′′′
(y) z, xyT

′
(z) = T

′′′
(x) yz.

Example 2.1. Let A be a C∗-algebra. If c ∈ A and Tc
′, Tc

′′ and
Tc
′′′ are the linear maps on A defined by Tc

′ (x) = cx,Tc
′′ (x) = xc and

Tc
′′′ (x) = c

1
2xc

1
2 , then (Tc

′, Tc
′′, Tc

′′′) is a triple centralizer on A .

Remark 2.1. If A is a commutative C∗-algebra, then Tc
′ = Tc

′′ =
Tc
′′′.

The following lemma is a simple consequence of the classical paper
related to Johnson (see [4]).

Lemma 2.1. Let x, y, z, w, w′ ∈ A .

1. If zx = zy, then x = y.
2. If zwx = zw′x, then w = w′.
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As an application of Lemma 2.1, we offer the following theorem:

Theorem 2.1. Let
(
T

′
, T

′′
, T

′′′) ∈M (A ). Then

(a) T
′
, T

′′
and T

′′′
are continuous maps from A to A .

(b) T
′
(xyz) = T

′
(x) yz for all x, y, z in A .

(c) T
′′

(xyz) = xT
′′

(y) z for all x, y, z in A .
(d) T

′′′
(xyz) = xyT

′′′
(z) for all x, y, z in A .

Proof. We prove only the statements made about T
′
. The statements

made about T
′′

and T
′′′

are proved analogously. Let x, y, z, w ∈ A . Let
(xi)i∈I be a net in A , and let α and β be complex numbers. Then

zT ′ (αx+ y)w = T ′′ (z) (αx+ y)w

= T ′′ (z) (αxw + yw)

= αT ′′ (z) (xw) + T ′′ (z) yw

= αzT ′ (x)w + zT ′ (y)w

= z (αT ′ (x) + T ′ (y))w

and therefore
T ′ (αx+ y) = αT ′ (x) + T ′ (y) .

Now, suppose that

lim
i→∞
‖xi − x‖ = lim

i→∞

∥∥∥T ′
(xi)− y

∥∥∥ = 0,

then∥∥∥zwT ′
(x)− zwy

∥∥∥ ≤ ∥∥∥zwT ′
(x)− zwT ′

(xi)
∥∥∥+

∥∥∥zwT ′
(xi)− zwy

∥∥∥
≤
∥∥∥T ′′′

(z)
∥∥∥ ‖wx− wxi‖+ ‖zw‖

∥∥∥T ′
(xi)− y

∥∥∥ .
Since the last term of this inequality tends to zero, we have

zwT
′
(x) = zwy,

for all z ∈ A . Thus y = T
′
(x) and T

′
has a closed graph. By the closed

graph theorem, T
′

is continuous.
Let x, y, z ∈ A , then

zT ′ (xy) = T ′′ (z)xy = ((T ′′z)x) y = zT ′ (x) y

therefore
T ′ (xy) = T ′ (x) y

and the proof is completed.
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Remark 2.2. In the above theorem, we have shown that if
(
T

′
, T

′′
, T

′′′) ∈
M (A ), then T

′
, T

′′
and T

′′′
are continuous and linear. Therefore, T

′

may be given the usual norm∥∥∥T ′
∥∥∥ = sup

‖x‖=1

∥∥∥T ′
(x)
∥∥∥ .

Similarly the above definition holds for T
′′

and T
′′′
.

Lemma 2.2. It is easily checked that for all x ∈ A

‖x‖ = sup
‖y‖=1

‖xy‖ .

The next result will be used in the proof of the main theorem which
follows.

Theorem 2.2. If
(
T

′
, T

′′
, T

′′′)
is a triple centralizer on a C∗-algebra

A , then
∥∥T ′∥∥ =

∥∥T ′′∥∥ =
∥∥T ′′′∥∥.

Proof. Since

‖xT ′ (y) z‖ = ‖T ′′ (x) yz‖ ≤ ‖T ′′‖
hence ‖T ′ (y)‖ ≤ ‖T ′′‖, on taking the supremum over y ∈ A with ‖y‖ =
1, we deduce that ∥∥∥T ′

∥∥∥ ≤ ∥∥∥T ′′
∥∥∥ .

Also
‖T ′′ (x) yz‖ = ‖xT ′ (y) z‖ ≤ ‖T ′‖

and therefore ‖T ′′ (x)‖ ≤ ‖T ′‖, taking the supremum over x ∈ A with
‖x‖ = 1, we obtain ∥∥∥T ′′

∥∥∥ ≤ ∥∥∥T ′
∥∥∥ .

Thus,
∥∥T ′∥∥ =

∥∥T ′′∥∥. Similar results may be stated for ‖T ′′‖ and ‖T ′′′‖.
However the details are left to the interested reader.

Definition 2.2. If
(
T

′
, T

′′
, T

′′′)
and

(
S

′
, S

′′
, S

′′′)
be in M (A ), we

define their product to be
(
T

′
, T

′′
, T

′′′)
.
(
S

′
, S

′′
, S

′′′)
=
(
T

′
S

′
, T

′′
S

′′
, S

′′′
T

′′′)
.

If T
′

: A → A , define T
′∗

: A → A by setting T
′∗

(x) =
(
T

′
(x∗)

)∗
.

Then T
′∗

is linear and the map T
′ → T

′∗
is an isometric conjugate-

linear map form B (A ) to itself such that T
′∗∗

= T
′

and
(
T

′
1T

′
2

)∗
=

T
′
2

∗
T

′
1

∗
. If

(
T

′
, T

′′
, T

′′′)
is a triple centralizer on A , so is

(
T

′
, T

′′
, T

′′′)∗
=(

T
′′′∗
, T

′′∗
, T

′∗
)

.
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Remark 2.3. It is easy to see that (T ′, T ′′, T ′′′)→ (T ′, T ′′, T ′′′)∗ is an
involution on M (A ).

Theorem 2.3. If A is a C∗-algebra, then M (A ) is a C∗-algebra
under the multiplication, involution and norm as defined above.

Proof. Easy computation and simplification yield

T
′

1T
′

2 (xyz) = T
′

1

(
T

′

2 (x) yz
)

= T
′

1

(
T

′

2 (x)
)
yz,

T
′′

1 T
′′

2 (xyz) = T
′′

1

(
αT

′′

2 (y) z
)

= αT
′′

1

(
T

′′

2 (y)
)
z,

T2
′′′
T1

′′′
(xyz) = T2

′′′
(
xyT1

′′′
(z)
)

= xyT2
′′′
(
T1

′′′
(z)
)
,

for each x, y, z ∈ A . Also

xT
′

1T
′

2 (y) z = xT
′

1

(
T

′

2 (y)
)
z=T

′′

1

(
T

′′

2 (x)
)
yz,

xT
′′′

2 T
′′′

1 (y) z = xT
′′′

2

(
T

′′′

1 (y)
)
z=xyT2

′′
(
T1

′′
(z)
)
,

since
(
T

′
, T

′′
, T

′′′)∗
=
(
T

′′′∗
, T

′′∗
, T

′∗
)

, then

T
′∗

(xyz) =
(
T

′
(xyz)∗

)∗
= (L (z∗y∗x∗))∗ =

(
T

′
(z∗) y∗x∗

)∗
= αβ

(
T

′
(γ∗)

)∗
= xyT

′∗
(z) ,

T
′′∗

(xyz) =
(
T

′′
(xyz)∗

)∗
=
(
T

′′
(z∗y∗x∗)

)∗
=
(
z∗T

′′
(y∗)x∗

)∗
= x

(
T

′′
(y∗)

)∗
z = xT

′′∗
(y) z,

T
′′′∗

(xyz) =
(
T

′′′
(xyz)∗

)∗
=
(
T

′′′
(z∗y∗x∗)

)∗
=
(
z∗y∗T

′′′
(x∗)

)∗
=
(
T

′′′
(x∗)

)∗
yz = T

′′′∗
(x) yz.

To prove that M (A ) is a ∗-algebra we must show that∥∥∥(T ′
, T

′′
, T

′′′
)∥∥∥ =

∥∥∥(T ′
, T

′′
, T

′′′
)∗∥∥∥ .
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It is easy to see that∥∥(T ′, T ′′, T ′′′)
∗∥∥ =

∥∥(T ′′′∗, T ′′∗, T ′∗)∥∥ =
∥∥T ′∗∥∥

= sup
{∥∥T ′∗ (xy)

∥∥ : ‖x‖ = ‖y‖ = 1
}

= sup
{∥∥(T ′(xy)∗)

∗∥∥ : ‖x‖ = ‖y‖ = 1
}

= sup
{∥∥(T ′∗ (y∗x∗)

)∗∥∥ : ‖x∗‖ = ‖y∗‖ = 1
}

therefore, we can state that∥∥∥(T ′
, T

′′
, T

′′′
)∥∥∥ =

∥∥∥(T ′
, T

′′
, T

′′′
)∗∥∥∥ .

Now, we show that M (A ) is a C∗-algebra.
(2.3)∥∥∥(T ′

, T
′′
, T

′′′
)∗ (

T
′
, T

′′
, T

′′′
)∥∥∥ =

∥∥∥(T ′′′∗
, T

′′∗
, T

′∗
)(

T
′
, T

′′
, T

′′′
)∥∥∥

=
∥∥∥(T ′′′∗

T
′
, T

′′∗
T

′′
, T

′′′
T

′∗
)∥∥∥

=
∥∥∥T ′′′∗

T
′
∥∥∥

≤
∥∥∥T ′′′∗

∥∥∥∥∥∥T ′
∥∥∥

=
∥∥∥T ′
∥∥∥2

=
∥∥∥(T ′

, T
′′
, T

′′′
)∥∥∥2

therefore, we have

(2.4)
∥∥∥(T ′

, T
′′
, T

′′′
)∗ (

T
′
, T

′′
, T

′′′
)∥∥∥ ≤ ∥∥∥(T ′

, T
′′
, T

′′′
)∥∥∥2.

On the other hand, for x, y, z ∈ A we have∥∥∥T ′′
(xyz)

∥∥∥2 =
∥∥∥(T ′′

(xyz)
)∗
T

′′
(xyz)

∥∥∥
=
∥∥∥T ′′∗

(z∗y∗x∗)T
′′

(xyz)
∥∥∥

=
∥∥∥T ′′∗

(z∗y∗x∗)xT
′′

(y) z
∥∥∥

=
∥∥∥T ′′

T
′′∗

(z∗y∗x∗)xyz
∥∥∥

≤
∥∥∥T ′′

T
′′∗
∥∥∥ ‖(xyz)‖2
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since
∥∥∥T ′′

T
′′∗
∥∥∥ =

∥∥∥T ′′′∗
T

′
∥∥∥ and by (2.3)

(2.5)
∥∥∥(T ′

, T
′′
, T

′′′
)∥∥∥2 ≤ ∥∥∥(T ′

, T
′′
, T

′′′
)∗ (

T
′
, T

′′
, T

′′′
)∥∥∥ .

Now from (2.4) and (2.5) it follows that∥∥∥(T ′
, T

′′
, T

′′′
)∗ (

T
′
, T

′′
, T

′′′
)∥∥∥ =

∥∥∥(T ′
, T

′′
, T

′′′
)∥∥∥2.

This completes the proof.

2.2. Application of triple centralizer on semigroups. In this sec-
tion, we investigate some algebraic properties of the triple centralizers.
We begin by two basic definitions.

Definition 2.3. A left (rep. center and right) centralizer on semi-
group G is a map T : G → G such that T (αβγ) = T (α) βγ (resp.
T (αβγ) = αT (β) γ for center and T (αβγ) = αβT (γ) for right) for all
α, β, γ ∈ G. A triple centralizer is an ordered triplet

{
T

′
, T

′′
, T

′′′}
of

maps G → G such that αT
′
(β) γ = T

′′
(α) βγ, αβT

′′
(γ) = αT

′′′
(β) γ

and αβT
′
(γ) = T

′′′
(α) βγ. If T is a left (resp. center and right) cen-

tralizer on G then we shall write Txy (resp. xTy and xyT ) for T (xy).
We denote the set of all left (resp. center and right) centralizers on G by
ΓL (G) (resp. ΓC (G) and ΓR (G)). It is clear that ΓL (G) (resp. ΓC (G)
and ΓR (G)) is a semigroup.
Each element ab of G generates a left (resp. center and right) centralizer
on G defined by Lab : x→ abx (resp. Cab : x→ axb and Rab : x→ xab)
for all x in G.

Definition 2.4. Let a, b, c, d be elements of G. ab and cd is called
left isoproductive if ab 6= cd and abx = cdx for all x ∈ G (that is if
Lab = Lcd). If G has no pairs of left isoproductive elements we say that
G is left faithful. If G is left and center and right faithful we shall say
that it is faithful.

Remark 2.4. We say thatG has a left cancellation law if for a, b, c, d ∈
G, xab = xcd then ab = cd. The rational extension of a commutative
semigroup with cancellation law is the smallest group in which it can be
embedded.

We can state the following result as well.
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Theorem 2.4. The left regular representation is a homomorphism of
G into ΓL (G). It is an isomorphism if and only if G is left faithful, and
is onto if and only if G has a left identity element. If G is commutative
then ΓL (G) = ΓC (G) = ΓR (G), and if G is faithful and commutative
then ΓL (G) is commutative. If G is commutative and has a cancellation
law then ΓL (G) is a sub-semigroup of the rational extension of G and,
in particular, has a cancellation law.

Proof. Let G be faithful and commutative. Let S, T ∈ ΓL (G) and let
x, y, z, w ∈ G. Then S (Txy) zw = Szx.Txy = Txy.Szx = T (xy.Szw) =
T (Sxyzw) = T (Sxy) zw. Since this holds for all zw in G, STxy = TSxy
for all x, y ∈ G, that is ST = TS. If G has a cancellation law then G
is certainly faithful, and if < is the rational extension of G then each
element T of ΓL (G) generates an element T

′
of ΓL (<) by T

′
(x, y, z) =

(Tx, y, z) for all x, y, z ∈ G. This gives an isomorphism of ΓL (G) into
ΓL (<), and since < has an identity, ΓL (<) is isomorphic with <.

Remark 2.5. The set Γ (G) of triple centralizers may be formed into
an associative semigroup by defining multiplication by{

S
′
, S

′′
, S

′′′
}{

T
′
, T

′′
, T

′′′
}

=
{
S

′
oT

′
, S

′′
oT

′′
, T

′′′
oS

′′′
}

where o denotes composition of functions.

By α → Dα = {Lα, Cα, Rα}, each α in G generates an element Dα of
Γ (G). This map is called the triple representation of G. We now show
the relationship between ΓL and Γ.

Theorem 2.5. Let G be right faithful and let
{
T

′
, T

′′
, T

′′′}
be a

triple centralizer on G. Then T
′

is a left centralizer. Also if {S1, T1, T2},
{S2, T1, T2} are triple centralizer then S1 = S2.

Proof. For the first part we have zwT
′
(x) y = zT

′′
(w)xy = T

′′′
(z)wxy =

zT
′′

(wx) y = zwT
′
(xy) for all x, y, z, w in G. For the second,

xyS1 (z) = xT1 (y) z = T2 (x) yz = xyS2 (z)

for all x, y, z in G.

Now, the following result is evident:

Corollary 2.1. If G is faithful and commutative then

ΓL (G) = ΓC (G) = ΓR (G) = Γ (G) .
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Finally and from a different view point we may state:

Theorem 2.6. The triple representation of G is a homomorphism of
G into Γ (G). If G is right faithful and has a right cancellation law, then
Γ (G) has a right cancellation law.

Proof. Suppose that G is right faithful and has a right cancellation
law, and that S1, S2, T1, T2 ∈ G with S1T1T2 = S2T1T2. Then for all
x, y, z in G,

S
′′

1 (x) .yT
′
(z) = x

[
S

′

1

(
yT

′
(z)
)]

= x
[
S

′

2

(
T

′′
(y) z

)]
= x

[
S

′

2

(
yT

′
(z)
)]

= S
′′

2 (x) yT
′
(z) .

So that S1
′′

= S2
′′
. As G is right faithful then by Theorem 2.5 S1 =

S2.
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