DOI QR코드

DOI QR Code

HR-Mediated Defense Response is Overcome at High Temperatures in Capsicum Species

  • Chung, Bong Nam (National Institute of Horticultural & Herbal Science, RDA) ;
  • Lee, Joung-Ho (Department of Plant Science College of Agriculture and Life Sciences, Seoul National University) ;
  • Kang, Byoung-Cheorl (Department of Plant Science College of Agriculture and Life Sciences, Seoul National University) ;
  • Koh, Sang Wook (Research Institute of Climate Change and Agriculture) ;
  • Joa, Jae Ho (Research Institute of Climate Change and Agriculture) ;
  • Choi, Kyung San (Research Institute of Climate Change and Agriculture) ;
  • Ahn, Jeong Joon (Research Institute of Climate Change and Agriculture)
  • Received : 2017.06.10
  • Accepted : 2017.09.27
  • Published : 2018.02.01

Abstract

Resistance to Tomato spotted wilt virus isolated from paprika (TSWV-Pap) was overcome at high temperatures ($30{\pm}2^{\circ}C$) in both accessions of Capsicum annuum S3669 (Hana Seed Company) and C. chinense PI15225 (AVRDC Vegetable Genetic Resources). S3669 and PI15225, which carrying the Tsw gene, were mechanically inoculated with TSWV-Pap, and then maintained in growth chambers at temperatures ranging from $15{\pm}2^{\circ}C$ to $30{\pm}2^{\circ}C$ (in $5^{\circ}C$ increments). Seven days post inoculation (dpi), a hypersensitivity reaction (HR) was induced in inoculated leaves of PI152225 and S3669 plants maintained at $25{\pm}2^{\circ}C$. Meanwhile, necrotic spots were formed in upper leaves of 33% of PI15225 plants maintained at $30{\pm}2^{\circ}C$, while systemic mottle symptoms developed in 50% of S3669 plants inoculated. By 15 dpi, 25% of S3669 plants had recovered from systemic mottling induced at $30{\pm}2^{\circ}C$. These results demonstrated that resistance to TSWV-Pap can be overcome at higher temperatures in both C. chinense and C. annuum. This is the first study reporting the determination of temperatures at which TSWV resistance is overcome in a C. annuum genetic resource expressing the Tsw gene. Our results indicated that TSWV resistance shown from pepper plants possess the Tsw gene could be overcome at high temperature. Thus, breeders should conduct evaluation of TSWV resistance in pepper cultivars at higher temperature than $30^{\circ}C$ (constant temperature).

Keywords

References

  1. Baulcombe, D. 2004. RNA silencing in plants. Nature 431:356-363. https://doi.org/10.1038/nature02874
  2. Black, L. L., Hobbs, H. A. and Gatti, J. M. 1991. Tomato spotted wilt virus resistance in Capsicum chinense PI152225 and 159236. Plant Dis. 75:863.
  3. Black, L. L., Hobbs, H. A. and Kammerlohr, D. S. 1996. Resistance of Capsicum chinense lines to tomato spotted wilt virus from Louisiana, USA, and inheritance of resistance. Acta Hortic. 431:393-401.
  4. Boiteux, L. S. 1995. Allelic relationships between genes for resistance to tomato spotted wilt tospovirus in Capsicum chinense. Theor. Appl. Genet. 90:146-149.
  5. Brittlebank, C. C. 1919. Tomato diseases. J. Agr., Victoria, Australia 17:213-235.
  6. Canto, T. and Palukaitis, P. 2001. A cucumber mosaic virus (CMV) RNA 1 transgene mediates suppression of the homologous viral RNA 1 constitutively and prevents CMV entry into the phloem. J. Virol. 75:9114-9120. https://doi.org/10.1128/JVI.75.19.9114-9120.2001
  7. Chung, B. N., Choi, H. S., Yang, E. Y. Cho, J. D., Cho, I. S., Choi, G. S. and Choi, S. K. 2012. Tomato spotted wilt virus isolates giving different infection in Commercial Capsicum annuum cultivars. Plant Pathol. J. 28:87-92. https://doi.org/10.5423/PPJ.NT.09.2011.0169
  8. Chung, B. N., Pak, H. S., Jung, J. A. and Kim, J. S. 2006. Occurrence of Tomato spotted wilt virus in Chrysanthemum (Dendranthema grandiflorum) in Korea. Plant Pathol. J. 22:230-234. https://doi.org/10.5423/PPJ.2006.22.3.230
  9. Chung, B. N., Tomas, C., Franscico, T., Choi, K. S., Joa, J. H., Ahn, J. J., Kim, C. H. and Do, K. S. 2016. The effects of high temperature on infection by Potato virus Y, Potato virus A, and Potato leafroll virus. Plant Pathol. J. 32:321-328. https://doi.org/10.5423/PPJ.OA.12.2015.0259
  10. Dufour, O., Palloix, A., Gebre Selassie, K., Pochard, E. and Marchoux, G. 1989. The distribution of cucumber mosaic virus in resistant and susceptible plants of pepper. Can. J. Bot. 67:655-660. https://doi.org/10.1139/b89-088
  11. Gao, Y., Lei, Z. and Reitz, S. R. 2012. Western flower thrips resistance to insecticides: detection, mechanisms and management strategies. Pest Manag. Sci. 68:1111-1121. https://doi.org/10.1002/ps.3305
  12. Ghoshal, B. and Sanfacon, H. 2014. Temperature-dependent symptom recovery in Nicotiana benthamiana plants infected with tomato ringspot virus is associated with reduced translation of viral RNA2 and requires ARGONAUTE1. Virology 456-457:188-197. https://doi.org/10.1016/j.virol.2014.03.026
  13. Gibbs, A. J. 1983. Tomato spotted wilt tospovirus. Plant viruses online: descriptions and lists from the VIDE Database.
  14. IPCC. 2014. Climate change 2014: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom / NY, USA. 996 pp.
  15. Jones, R. A. 2009. Plant virus emergence and evolution: origins, new encounter scenarios, factors driving emergence, effects of changing world conditions, and prospects for control. Virus Res. 141:113-130. https://doi.org/10.1016/j.virusres.2008.07.028
  16. Kim, J. H., Choi, G. S., Kim, J. S. and Choi, C. K. 2004. Characterization of Tomato spotted wilt virus from paprika in Korea. Plant Pathol. J. 20:297-301. https://doi.org/10.5423/PPJ.2004.20.4.297
  17. Macdiarmid, R. 2005. RNA silencing in productive virus infection. Annu. Rev. Phytopathol. 43:523-544. https://doi.org/10.1146/annurev.phyto.43.040204.140204
  18. Makkouk, K. M. and Kumari, S. G. 1993. Movement of bean yellow mosaic virus in susceptible and resistant faba bean genotypes. Fabis Newsletter 32:35-37.
  19. Moury, B., Palloix, A., Selassie-Gebre, K. and Marchoux, G. 1997. Hypersensitive resistance to tomato spotted wilt virus in three Capsicum chinense accessions is controlled by a single gene and is overcome by virulent strains. Euphytica 94:45-52. https://doi.org/10.1023/A:1002997522379
  20. Moury, B., Selassie-Gebre, K., Marchoux, G., Daubeze, A. M. and Palloix, A. 1998. High temperature effects on hypersensitive resistance to tomato spotted wilt tospovirus (TSWV) in pepper (Capsicum chinense Jacq.). Euro. J. Plant Pathol. 104:489-498. https://doi.org/10.1023/A:1008618022144
  21. Myers, L. D., Sherwood, J. L., Siegerist, W. C. and Hunger, R. M. 1993. Temperature-influenced virus movement in expression of resistance to soilborne wheat mosaic virus in hard red winter wheat (Triticum aestivum). Phytopathology 83:548-551. https://doi.org/10.1094/Phyto-83-548
  22. Pennazio, S. 1995. The hypersensitive reaction of higher plants to viruses: A molecular approach. Microbiologica 18:229-240.
  23. Resende, R. de O., de Haan, P., de Avila, A. C., Kitajima, E. W., Kormelink, R., Goldbach, R. and Peters, D. 1991. Generation of envelope and defective interfering RNA mutants of tomato spotted wilt virus by mechanical passage. J. Gen. Virol. 72:2375-2383. https://doi.org/10.1099/0022-1317-72-10-2375
  24. Roggero, P., Lisa, V., Nervo, G. and Pennazio, S. 1996. Continuous high temperature can break the hypersensitivity of Capsicum chinense 'PI152225' to tomato spotted wilt tospovirus (TSWV). Phytopathologia Mediterranea 35:117-120.
  25. Rosello, S., Diez, M. J. and Nuez, F. 1997. Utilization of Capsicum sp. resistance to TSWV in pepper breeding. Capsicum and Eggplant Newsletters 16:87-90.
  26. Samuel, G., Bald, J. G. and Pittman, H. A. 1930. Investigation on 'spotted wilt' of tomatoes. Aust. Council Sci. Ind. Res. Bull. 44:64.
  27. Soler, S., Diez, M. J. and Nuez, F. 1998. Effect of temperature regime and growth stage interaction on pattern of virus presence in TSWV-resistant accessions of Capsicum chinense. Plant Dis. 82:1199-1204. https://doi.org/10.1094/PDIS.1998.82.11.1199
  28. Solymosy, F. 1970. Biochemical aspects of hypersensitivity to virus infection in plants. Acta Phytopathol. Acad. Sci. Hung. 5:55-63.
  29. Szittya, G., Silhavy, D., Molnar, A., Havelda, Z., Lovas, A., Lakatos, L., Banfalvi, Z. and Burgyan, J. 2003. Low temperature inhibits RNA silencing-mediated defense by the control of siRNA generation. EMBO J. 22:633-640. https://doi.org/10.1093/emboj/cdg74
  30. Taliansky, M., Aranda, M. A. and Garciaarenal, F. 1994. Differential invasion by tobamoviruses of Nictiana megalosiphon following the hypersensitive response. Phytopathology 84:812-815. https://doi.org/10.1094/Phyto-84-812
  31. Weststeijn, E. A. 1984. Evidence for a necrosis-inducing factor in tobacco mosaic virus-infected Nicotiana tabacum cv. Xanthinc grown at $22^{\circ}C$ but not at $32^{\circ}C$. Physiol. Plant Pathol. 25:83-91. https://doi.org/10.1016/0048-4059(84)90019-5
  32. Zhu, Y., Qian, W. and Hua, J. 2010. Temperature modulates plant defense responses through NB-LRR proteins. PLoS Pathog. 6:e1000844. https://doi.org/10.1371/journal.ppat.1000844