DOI QR코드

DOI QR Code

Hip Range of Motion Estimation using CT-derived 3D Models

CT기반 3차원 모델을 이용한 고관절 운동범위 예측

  • Lee, Yeon Soo (Department of Biomedical Engineering, Catholic University of Daegu)
  • 이연수 (대구가톨릭대학교 의공학과)
  • Received : 2018.02.02
  • Accepted : 2018.02.28
  • Published : 2018.02.28

Abstract

The success of the total hip arthroplasty is revealed as initial stability, range of motion, and long term pain, etc. Depending upon choice of implantation options such as femoral neck offset, diameter of the femoral head, the lateral opening tilt. Especially the impingement between femoral head component and acetabular cup limits the range of motion of the hip. In this sense, estimation or evaluation of the range of motion before and after the total hip arthroplasty is important. This study provides the details of a computer simulation technique for the hip range of motion of intact hip as well as arthroplasty. The suggested method defines the hip rotation center and rotation axes for flexion and abduction, respectively. The simulation uses CT-based reconstructed 3D models and an STL treating software. The abduction angle of the hip is defined as the superolateral rotation angle from sagittal plane. The flexion angle of the hip is defined as the superoanterior angle from the coronal plane. The maximum abduction angle is found as the maximum rotation angle by which the femoral head can rotate superolaterally about the anterior-posterior axis without impingement. The maximum flexion angle is found as the maximum rotation angle by which the femoral head can rotate superoanteriorly about the medial-lateral axis without impingement. Compared to the normal hip, the total hip replacement hip showed decreased abduction by 60 degrees and decreased flexion by 4 degrees. This measured value implies that the proposed measurement technique can make surgeons find a modification of increase in the femoral neck offset or femoral head, to secure larger range of motion.

본 연구에서는 CT영상기반 3차원 고관절모델을 이용한 컴퓨터시뮬레이션을 통해서 고관절의 운동범위(Range of Motion)를 측정하는 방법을 제시하였다. 본 연구에서는 그 측정방법에 대한 기술적인 사항을 제시하고, 그 기술이 재현성 있게 실현할 수 있도록 대퇴골두 중심점의 결절, 대퇴골 외전(Abduction)/내전(adduction)회전축, 굽힙(flexion)/신전(extension) 회전축을 정의하고 측정하는 명확한 방법을 제시하였다. 외전각은 해부학적인 시상면(Sagittal plane)상의 Anterior-Posterior축에 대해 아래쪽(Inferior)면으로부터 Lateral 쪽으로의 회전각으로 정의된다. 최대외전각은 대퇴골두가 엉덩이뼈(Pelvis)의 절구(Acetabulum)의 테두리와 겹치지 않고 Anterior-Posterior축을 중심으로 회전할 수 있는 최대 외전각으로 결정된다. 굴곡각은 해부학적인 관상면(Coronal plane)상의 Medial-Lateral축에 대해 아래쪽(Inferior)면으로부터 회전각으로 정의된다. 최대굴곡각은 대퇴골이 Medial-Lateral축을 중심으로 엉덩이뼈(Pelvis)의 절구(Acetabulum)의 테두리와 겹치지 않고 회전할 수 있는 최대 굴곡각으로 결정된다. 정상고관절에 비해 인공고관절술을 받은 해당 환자의 경우, 외전에서는 60도 정도, 굽힘에서는 4도 정도 운동범위가 줄어들 수 있다는 예측이 나왔다. 본 연구에서 행한 시뮬레이션을 해보고 외전의 경우 운동범위의 감소가 예측되므로, 대퇴골두를 조금 큰 것을 고르거나 대퇴골목부의 길이 (femoral neck offset)를 길게 시술해야 할 필요가 있음을 의미한다.

Acknowledgement

Supported by : 대구가톨릭대학교

References

  1. B. L. REED, P. C. NOBLE, N. R. KADAKIA, H. S. TULLOS, "The Effect of Femoral Component Head Size on Posterior Dislocation of the Artificial Hip Joint," THE JOURNAL OF BONE AND JOINT SURGERY, Vol. 82-A, No. 9, pp. 1300-1307, 2000.
  2. D. D. D'LIMA, A. G. URQUHART, K. O. BUEHLER, R.. H. WALKER, C. W. COLWELL, "The Effect of the Orientation of the Acetabular and Femoral Components on the Range of Motion of the Hip at Different Head-Neck Ratios," THE JOURNAL OF BONE AND JOINT SURGERY, Vol. 82, pp. 315-321, 2000. https://doi.org/10.2106/00004623-200003000-00003
  3. J. H. Ro, C. S. Shin, "Optimization of Total Hip Replacement Prosthesis Neck Design to Maximize Range of Motion," 2015 KSME Spring conference, pp. 173-174, 2015.
  4. S. BLENDEA, K. ECKMAN, B. JARAMAZ, T. J. LEVISON, A. M. DIGIOIA, "Measurements of acetabular cup position and pelvic spatial orientation after total hip arthroplasty using computed tomography/radiography matching," Computer Aided Surgery, Vol. 10, No. 1, pp. 37-43, 2005. https://doi.org/10.3109/10929080500178032
  5. F. Yoshiminea, K. Ginbayashi, "A mathematical formula to calculate the theoretical range of motion for total hip replacement", Journal of Biomechanics, Vol. 35, pp. 989-993, 2002. https://doi.org/10.1016/S0021-9290(02)00040-4
  6. K. W. Kim, T.H. Lee, W. D. Nam, K. H. Rhyu, "Normal Adult Hip Range of Motion Focusing on Hip Flexion", J. Korean Orthopaedic Assocation, Vol. 41, pp. 361-367, 2006. https://doi.org/10.4055/jkoa.2006.41.2.361
  7. B. R. Burroughs, B. Hallstrom, G. J. Golladay, D. Hoeffel, W. H. Harris," Range of Motion after Total Hip Arthroplasty related to Head Design and Neck Geometry", The Journal of Arthroplasty, Vol. 20, No. 1, pp. 11-19, 2005. https://doi.org/10.1016/j.arth.2004.07.008
  8. L. Oliverona, J. Craford, "Acetabular migration in the total hip arhtroplasty," Acta radiologica Acta Radiologica, Vol. 43, pp. 517-527, 2002. https://doi.org/10.1034/j.1600-0455.2002.430513.x
  9. M. Seki, N. Yuasa, and K. Ohkuni, "Analysis of Optimal Range of Socket Orientations in Total Hip Arthroplasty with Use of Computer- Aided Design Simulation," Journal of Orthopaedrc Research, Vol. 16, pp. 513-517, 1998. https://doi.org/10.1002/jor.1100160418
  10. P. C. Noble, N. Sugano, J. D. Johnston, M. T. Thompson, "Computer Simulation: How Can it Help the Surgeon Optimize Implant Position?," CLINICAL ORTHOPAEDICS AND RELATED RESEARCH, No. 417, pp. 242-252, 2003.
  11. R. D. Crowninshield, W. J. Maloney, D. H. Wentz, S. M. Humphrey, C. R. Blanchard, "Biomechanics of Large Femoral Heads," CLINICAL ORTHOPAEDICS AND RELATED RESEARCH, No. 429, pp. 102-107, 2004.
  12. J. H. Ro, C. S. Shin, S. M. Joo, J. H. Lee, S. H. Lee, H.-Y. Jeong, "Measurement of range of motion for total hip arthroplasty using 3D model simulation," 2011 Korean Precision Engineering Society Conference, pp. 1491-1492, 2011.