DOI QR코드

DOI QR Code

Eigenspaces of Max-Plus Matrices: An Overview

  • Received : 2018.01.26
  • Accepted : 2018.02.25
  • Published : 2018.02.28

Abstract

In this expository paper, we present an abridged report on the max-plus eigenspaces of max-plus matrices with its brief history. At the end of our work, a number of examples are presented with maple codes, and then we make a claim from the observation of these examples, which is on the euclidean dimension of the max-plus eigenspaces of strongly definite matrices.

Keywords

References

  1. M. AKIAN, S. GAUBERT and C. WALSH, Discrete max-plus spectral theory. In Idempotent Mathematics and Mathematical Physics (G. Litvinov and V. Maslov, eds.), Contemporary Mathematics 377, AMS, Providence, 2005, 53-77.
  2. F. BACCELLI, G. COHEN, G. -J. OLSDER, and J. -P. QUADRA, Synchronization and Linearity. An Algebra for Discrete Event Systems, NY etc., Wiley, 1992.
  3. P. BUTKOVIC, Max-linear Systems: Theory and Algorithms, Springer, 2010.
  4. P. BUTKOVIC, H. SCHNEIDER, S. SERGEEV, Generators, extremals and bases of max cones, Linear Algebra and Appl. 421 (2007), 394-406. https://doi.org/10.1016/j.laa.2006.10.004
  5. P. BUTKOVIC, H. SCHNEIDER, S. SERGEEV, On visualization scaling, subeigenvectors and Kleene stars in max algebra, Linear Algebra and Appl. 431 (2009), 2395-2406. https://doi.org/10.1016/j.laa.2009.03.040
  6. R. A. CUNINGHAME-GREEN, Minimax Algebra, Lecture Notes in Economics and Mathematical Systems 166, Springer, 1979.
  7. M. DEVEUN, F. SANTOS, B. STURMFELS, On the Rank of a Tropical Matrix, Mathematical Sciences Research Institute Publications, Cambridge Univ. Press, 2005, 213-242.
  8. M. DEVEUN, B. STURMFELS, Tropical Convexity, Documenta Math. 9 (2004), 1-27.
  9. G. M. ENGEL and H. SCHNEIDER, Cyclic and diagonal products on a matrix, Linear Algebra and Appl. 7 (1973), 301-335. https://doi.org/10.1016/S0024-3795(73)80003-5
  10. S. GAUBERT, Theorie des systemes lineaires dans les dioides, These, Ecole des Mines de Paris, 1992.
  11. S. GAUBERT, Resource Optimization and (min;+) Spectral Theory, IEEE Trans. on Automat. Control 40(11) (1995), 1931-1934. https://doi.org/10.1109/9.471219
  12. M. GONDRAN, M. MINOUX, Linear Algebra in Dioids: A Survey of Recent Results, North-Holland Mathematics Studies 95 (1984), 147-163.
  13. Bernd HEIDERGOTT, Geert Jan OLDSER, Jacob VAN DER WOUDE,, Max plus at work: Modeling and analysis of synchronized systems: a course on max-plus algebra and its applications, Princeton University Press, Princeton, NJ, 2006.
  14. KIM Yonggu, SHIN Hyun-Hee, An Overview of Max-Plus Linear Systems, Honam Mathematical Journal 33(1) (2011), 93-113. https://doi.org/10.5831/HMJ.2011.33.1.093
  15. S. C. KLEENE, Representation of events in nerve sets and finite automa automa, Automata Studies, Annals of Mathematical Studies 34 (1956), 3-41.
  16. Diane MACLAGAN, Bernd STURMFELS, Introduction to tropical geometry, Graduate Studies in Mathematics 161, American Mathematical Society, Providence, RI, 2015.
  17. Jurgen RICHTER-GEBERT, Bernd STURMFELS, Thorsten Theobald, First steps in tropical geometry, Idempotent mathematics and mathematical physics, Contemp. Math. 377, Amer. Math. Soc., Providence, RI (2005), 289-317.
  18. S. SERGEEV, Max-plus definite matrix closures and their eigenspaces, Linear Algebra and Appl. 421 (2007) 182-201. https://doi.org/10.1016/j.laa.2006.02.038
  19. A. SHIMBEL, Structure in communication nets, Proc. Symp. on Information Networks, Polytechnic Institute of Brooklyn (1954), 119-203.