
Copyright ⓒ 2018 The Digital Contents Society 407 http://www.dcs.or.kr pISSN: 1598-2009 eISSN: 2287-738X

JDCS 디지털콘텐츠학회논문지
Journal of Digital Contents Society
Vol. 19, No. 2, pp. 407-413, Feb. 2018

사물인터넷 컴퓨팅 환경에서 QoS를 고려한 데이터 전송 구조

이 윤 석
한국외국어대학교 컴퓨터전자시스템공학부

QoS-aware Data Delivery Infrastructure for IoT Computing
Environments
Yunseok Rhee
Division of Computer & Electronic Systems Eng., Hankuk University of Foreign Studies, Yongin 17035, Korea

[요 약]

최근 사물인터넷(IoT) 기술의 발전과 함께 수많은 센서와 소형 구동장치들로 구성된 새로운 컴퓨팅 환경이 도래했다. 본 논문은

이와 같은 IoT 기반 컴퓨팅 환경에서 데이터 제공자들과 소비자들 사이에 센싱 데이터를 쉽게 공유하고 접근하도록 지원하는 공

유 플랫폼으로서, 확장성있는 데이터 전송 기반구조를 제안한다. 확장성과 효율성을 제공하기 위해, 이 논문은 특히 소비자들 간

의 서로 다른 QoS 요구사항을 활용하여 전송 대역폭을 효과적으로 활용한 전송 경로를 구성하는 방법을 제시한다. 전송경로 구성

과 재구성 과정이 제안하는 구조의 가장 큰 오버헤드로 판단되므로, 본 논문에서는 그 비용을 산정하는 기본적인 실험을 수행하였

는데, 결과는 제안된 구조의 우수한 확장성에 비해 오버헤드는 비교적 적은 것으로 확인되었다.

[Abstract]

In this paper, we present a scalable data delivery infrastructure for such IoT computing environment where we need a common
platform where data providers share their diverse sensing data and applications can easily access and receive such data from
providers. For efficient data delivery, this paper proposes a new delivery path management technique that take advantage of
diverse consumer QoS when building bandwidth-efficient delivery paths. We perform primitive experiments on the path
construction and reconstruction which may be major overhead of the scalable infrastructure. The results show that the proposed
infrastructure achieves a high level of scalability, and demonstrates that the management overhead is not significant.

색인어 : 데이터 전송 구조, 사물인터넷, 센싱 응용, Quality of Service (QoS)

Key word : Data delivery infrastructure, Internet of Things (IoT), Sensing application, Quality of Service (QoS)

http://dx.doi.org/10.9728/dcs.2018.19.2.407

This is an Open Access article distributed under
the terms of the Creative Commons Attribution
Non-CommercialLicense(http://creativecommons

.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial
use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Received 19 February 2018; Revised 26 February 2018
Accepted 27 February 2018

*Corresponding Author; Yunseok Rhee

Tel: +82-10-3429-5768
E-mail: rheeys@hufs.ac.kr

디지털콘텐츠학회논문지(J. DCS) Vol. 19, No. 2, pp. 407-413, Feb. 2018

http://dx.doi.org/10.9728/dcs.2018.19.2.407 408

Ⅰ. Introduction

The rapid advance of Internet of Things (IoT) technologies has
opened up a new computing environment with a myriad of
sensors and tiny devices. It enables numerous sensing real-time
applications to grow in scale, complexity, and diversity. In
addition to static sensor networks, recent IoT technologies tend to
enrich such applications in a more dynamic and instant fashion
[1-4]. In particular, mobile sensing nodes such as mobile phones
and vehicles with sensors are promoting the practical use and the
deployment of such dynamic sensor networks [5,6].

Also, recent fog networking enables lots of computing devices
to interact at edge nodes of a network, and results in fully
distributed data and application processing [7]. These
network-centric computing environments require a QoS-aware
data delivery infrastructure that efficiently shares limited network
resources while meeting the service requirements of each
application [8]. Without these infrastructures, building an
infrastructure for each application is not easy nor inefficient.

These real-time detection applications must continually
monitor the current state of a particular entity or situation in a
particular region so that application users can provide
context-aware services in a timely manner. The applications have
requirements for a new type of delivery service. Depending on the
application users’ business or personal purposes, users want to
observe data of interest in different QoS levels of detail, and the
applications need real-time delivery in the sense that they receive
data within the quality of service to perform agile actions.

Ⅱ. Network Architecture

We present a scalable data delivery infrastructure, in short
SDI, for continuous sensing applications in IoT environments. As
in Fig. 1, the infrastructure relies on a collection of nodes that are
strategically located. Data providers and consumers connect to
SDI through nearby SDI nodes. For each data provider, SDI
forms an efficient delivery path along with the data from the
supplier to all interested consumers. Data consumers receive data
delivery service through SDI according to the following
procedure based on the publish/subscribe system [9-11].

First, the service description for the sensor network is obtained
through the SDI portal, which helps consumers to search for
interesting IoT networks with relevant information such as
supplier ID, location, data type, and so on. According to the
service description, each consumer creates a query specifying
his/her requirement. The query is then forwarded to the SDI

portal for registration. Upon receipt of the query, the SDI portal
designates the closed SDI node to the consumer as a proxy. When
SDI establishes an end-to-end delivery path from a provider to a
designated proxy node, a consumer receives the data of interest
through the assigned SDI nodes within an tolerable delay. A
similar process allows data providers to publish data to consumers
through SDI. Each provider that owns a sensor network registers
network specifications which contains network ID, data schema,
data rate, and network description, etc.

As shown in Fig. 2, SDI nodes are hierarchically organized for
scalable network management, and nodes are clustered based on
network proximity. With an appropriately sized cluster unit, the
SDI network is managed in a two-level hierarchy of these
clusters. The hierarchy can be extended to more levels if
necessary, but for simplicity, we consider only two levels in this
work. In each cluster, one of the SDI nodes is elected as a local
head. With all the local heads, a second-level cluster is formed
and one of them is elected as a global head. Each local or global
head node must be located near the center of its cluster for
efficient cluster management; the node with the least sum of
network latencies to other members within its cluster is chosen as
a head node. The head node manages the size of the cluster (i.e.,
the number of nodes in the cluster), and splits a large cluster or
merges small clusters so as to keep the size of each cluster within
a certain range. The head node maintains information about each
member node such as available bandwidth, latencies to other
member nodes from the node, etc. The information is used not
only for cluster management, but also for efficient delivery path
management.

A data delivery path is established based on the cluster-based
hierarchy mentioned above. That is, a node is responsible to
deliver data to all member nodes in its cluster, and also creates a
tree rooted at the node. We refer to the tree formed in each local
cluster as a local tree and its root node as LPX (Local ProXy),
respectively. In a local cluster, the first member node, i.e., the
root of a delivery tree becomes an LPX of the cluster. Similarly,

그림 1. SDI 서비스 개략

Fig. 1. SDI service overview

하위 훈련 성과 융합을 위한 순환적 계층 재귀 모델

409 http://www.dcs.or.kr

the tree that connects the local trees is referred to as a global tree,
and its root node as GPX (Global ProXy), respectively. The SDI
node closest to a provider is chosen as a GPX for the provider,
which sends data to consumers through the GPX. Since SDI
consists of one or more delivery paths, An SDI node can act
differently for each delivery path it serves. GPX and LPX jointly
manage the delivery path for scalable path management. We
hereafter refer to both GPX and LPX simply as manager nodes,
since the operations performed at a GPX or an LPX are almost
same.

Each manager node is responsible for a small portion of the
overall delivery path. Based on the node information from its
local head, it constructs delivery paths connecting all the other
members in the cluster. For efficient path construction, the
number of members per manager needs to be less than a hundred.
We expect that the administrative overhead imposed on each
manager node is not significant for the SDI network.

Ⅲ. Delivery Path Management

3-1 Delivery Path Model

For simplicity, we focus on the construction and maintenance
of a single delivery tree. Given a delivery tree for a provider, each
member, mi, declares its own QoS requirement, and aggregates
the requirements of all consumers connected to itself. As an
example, in this paper, we consider two QoS parameters of data
volume (or bandwidth) and delay for a member mi, and denote as
Bi and di, respectively.

An aggregated QoS requirement at a member is defined as the
accumulation of delivery requirements imposed on all nodes over
the path from the root to the member mi. As a result, the
aggregated requirement at mi should meet itself as well as all its
descendents as in Figure 3. We denote the aggregated

requirements of data and delay at mi as 
 and 

 , respectively.

It can be recursively computed from the individual delivery
requirement of mi and the aggregated ones of mi’s all descendants.

3-2 Selective Forwarding

Each node is designed to maintain data and forwarding
requirements on each node with a data structure called a Selective
Forwarding Table (SFT) to efficiently deliver data to the
descendants of the node. The forwarding information in an SFT
contains a list of next members and processing operators that
must be applied before passing the data to the next member. We
denote an operator applied at member mi while forwarding
incoming data to the member mj by Qi,j. The number of
processing elements, kj, depends on the range of data values
required by its descendants. Similar to the aggregated
requirements, a processing operator also specifies the range of
data values of interest to each subsequent node as well as
spatial and temporal sampling rates to be applied to incoming
data streams prior to delivery. Given an operator { <dmin, dmax>,
restime, resspace} for the next node mj, the data is forwarded to mj
at corresponding spatial and temporal sampling rates of restime
and resspace only when a incoming data meets the range (dmin,
dmax). The operator is applied to remove unnecessary data for
mj. Thus, the next member mj receives data as specified in its

aggregated data requirement 
 .

In the example shown in Figure 4(b), the aggregated data

requirement 
 at m1 is {<(10, 15), 0.25, 0.5>, <(15, 30), 0.5,

0.5>} and the aggregated delay requirement 
 is 1.7sec, which

means that m1 requires data between 10 and 15 with spatial and
temporal resolutions of 0.25 and 0.5, respectively, and those
between 15 and 30 with spatial and temporal resolutions of 0.5
and 0.5, respectively, within 1.7sec. The figure also shows an
SFT construction example at m1 which satisfies the delivery path
shown in Figure 4(a). In the table, an operator Q1,2, {<(10, 15),
1.0, 1.0>, <(15, 20), 0.5, 1.0>} is applied at m1 for the member
m2. Thus, it filters data within (10, 15) or (15, 20), and then
forwards the data with the associated spatial and temporal

그림 2. SDI의 계층적 구조

Fig. 2. Hierarchical Structure of SDI

그림 3. 총량화된 QoS 요구사항

Fig. 3. Aggregated QoS requirement

디지털콘텐츠학회논문지(J. DCS) Vol. 19, No. 2, pp. 407-413, Feb. 2018

http://dx.doi.org/10.9728/dcs.2018.19.2.407 410

sampling rates. The SFT also includes a processing operator Q1,1,
{<(15, 30), 1.0, 1.0>} for itself, in this example, operation on the
data from m1 to m1. The operator exists to obtain data that match
m1’s own delivery requirement. Then, the data is selectively
delivered to all consumers connected to m1 based on their delivery
requirements.

3-3 Path Construction

In this section, we describe delivery path construction which
may be conducted in an urgency- and similarity-based manner.
Note that the task determines not only parent-child relationships
between nodes but also the appropriate processing to be taken at
each node prior to delivery of incoming data to subsequent nodes.
We assume that initially only the root member is in a delivery
tree, and each new member is then added to an existing tree.

A simple way to add a new member is to select a parent node
from existing member nodes without changing the existing tree
structure. It is simple, but the method is not effective in practice.
First, the insertion of a new member can increase the bandwidth
requirements of the ancestor members, and potentially exceed the
available amount. Also, if the new node has a tight delay
requirement, the situation becomes more complicated. Members
must be added upward to the tree near to the root due to the
stringent requirements. However, available bandwidth often
becomes scarce near the root.

Consider a member trying to join a delivery tree. It first
contacts the manager node that is responsible for managing the
tree and the join requests (i.e., the root member in the delivery
path). Upon request, the manager node selects the best parent
member for the new member. Note that our member joining
process does not simply specify an adequate parent member to the
new member; rather it figures out a valid tree structure that can

accommodate all of the existing members as well as the new
member while satisfying their delivery requirements. The join
process attempts a tree update plan to include a new member, and
the plan is executed to actually update the delivery tree.

The join process is performed in two phases; (1) normal join
and (2) aggressive join. The normal join phase conducts to add
the new member mk while maintaining the current tree structure.
If a new member cannot be accommodated, it begins an
aggressive join phase where partial rearrangement is performed to
accommodate the member. Thus, the aggressive join may cause
some members to be detached and rejoined later. The join process
is therefore a recurring iterative process for the new member and
the detached members. Unless it can find an adequate parent for
either the new member mk or the other members to rejoin, the join
process consequently fails. We then determine that the current
network resources are insufficient to accommodate the new
member.

Given a new member mk, the normal join phase finds a parent
member that can deliver data to mk while satisfying the delivery
requirement. For the purpsose, it first finds parent candidates out
of all existing members and then selects one that provides the
most efficient delivery path in terms of bandwidth consumption.
To determine whether an existing member mp can become the
parent candidate of mk or not, we check mp with a few conditions
under the assumption that mp becomes the parent of mk.

3-4 Path Reconstruction

If no candidate parent meets the previous three conditions on
bandwidth and delay constraints, an aggressive join phase will
begin. The aggressive join means that the new member selects its
parent mp while leaving out some existing children with lower
priorities in terms of urgency (see Figure 5). This phase is
performed in two steps as follows. First, even if some conditions
are violated, the new member is added to the tree by selecting a
parent. Then, the violations would be eliminated by partially
reorganizing the tree structure. Prior to the rearrangement, a plan
must be established to describe the sequence of detachment and
re-joining of members. This plan should accommodate new
members as well as existing members after relocation. If an
adequate plan is not found, the join process fails. We also
determine that the current network resources are insufficient to
include the new member.

In the case of aggressive join phase, the three conditions are
incrementally alleviated one by one to select a candidate parent.
Such relaxations allow us to take into an account the members not
considered in the normal join phase. As before, we let mk be the
new member and mp be the candidate parent member being tested.

그림 4. 선택적 전달 구조 예

Fig. 4. Selective Forwarding Structure Example

하위 훈련 성과 융합을 위한 순환적 계층 재귀 모델

411 http://www.dcs.or.kr

In this requirement relaxation process, a candidate parent is
selected by iteratively detaching some of its children and
checking the previous three conditions after the detachment.
Suppose mp detaches its children with aggregated delay
requirements greater than mk (see also Figure 5). The changed
bandwidth consumption of mp after the detachment is denoted by
″ , and the changed aggregated delay requirement is denoted

by ″ , respectively. The difference between  and ″ is

also denoted by ′ . At this time, mp can be a candidate parent if

it meets these three conditions after the detachment.

i) Parent bandwidth condition: ′≤  
ii) Delay condition: ″ ≥  
iii) Ancestor bandwidth condition:
′≤ ′≤ ′≤ 

If several parent candidates are found, a candidate with the
best bandwidth saving is selected. We may not find a proper
candidate for the new member mk, despite the first relaxation.
Then, in the further relaxation steps, we attempt to alleviate delay
condition and ancestor's bandwidth condition, each one from the
above requirement conditions, respectively, to find an adequate
position while detaching ancestors’ children.

After selecting a parent for the new member, we establish a
rearrangement plan to construct a valid delivery tree which
accommodates the new member. The plan is performed in two
steps. First, we look up the members with bandwidth violations,
and select the members to detach. To remove the bandwidth
violation of a member, we select its child members with the
longest delay requirement for detachment. The selection can be
repeated until the bandwidth violation is removed.

Ⅳ. Experiments

4-1 Experimental Setup

We simulated an virtual network of SDI nodes over the
network topology modelled by DS2 [12], which specifies static
round-trip propagation delays between all pairs of network nodes.
The default number of nodes is set to 4,000 and the default node
bandwidth to 5Mbps. These parameters are chosen to demonstrate
the performance of SDI in a large-scale environment where
delivery paths consist of many nodes with limited bandwidth
resources. In this experiment, we limit the number of clusters to
100.

For query workloads, we consider two different scenarios
which have similar characteristics, but different preferences on
selecting data providers. In the first, we assume that data
consumer is a real world navigation application where application
users want to observe sensing data from all siets worldwide. In
the second, we assume that data consumer is a mesoscale weather
forecast application where users are primarily interested in local
weather information. In the real world navigation applications,
data providers are selected randomly. On the other hand, in the
mesoscale weather forecasting applications, the provides are
selected based on the proximity to data consumers. Based on a
Zipf distribution, adjacent data providers are selected with high
probability, whereas distant ones are selected with low
probability.

4-2 Path Management Overhead

In this paper, we show the overhead of our path construction
process. To do this, we measure the average number of join
operations that are executed to include a new member. Recall that
our scheme performs path rearrangement to accommodate the
members that are not included only by the normal join. The
rearrangement is performed by detaching and rejoining some
members, and thus additional join operations are executed. To
clearly show the cost of join operations, a node is allowed to have
at most one query for each data provider. In this experiment
setting, a new query registration corresponds to a new member
join.

Figure 5 compares the path management overheads with the
normal join only scheme and with normal join and aggressive join
scheme, respectively. It is obvious that the scheme using
aggressive joins is more scalable and efficient, but the overhead
will be quite significant. In the experiments, however, our path
construction scheme with both the normal and the aggressive join
phases shows a slightly higher number of join operations, ranging
from 1.02 to 1.19, compared to the scheme of normal join only.
This result shows that the overhead by the aggressive join phase
is not significant.

To better understand the effects of aggressive joins, we need to
take a closer look at the results in Figure 6. As described in
Section 3.2, in the aggressive join phase, the three conditions of
the normal join phase are mitigated one by one. To show the
overhead of each join type, we measure the average number of
actually performed join operations for each join operation. To add
a new member with a normal join, the join operation needs to be
executed only once for the new member itself. However, to add
the member with an aggressive join, more than one join operation
is required because the aggressive join may generate a few rejoin

디지털콘텐츠학회논문지(J. DCS) Vol. 19, No. 2, pp. 407-413, Feb. 2018

http://dx.doi.org/10.9728/dcs.2018.19.2.407 412

operations. In the case of the relaxation, about 3.5 join operations
are required, generating 2.5 rejoin operations on the average. The
rejoined members are the ones that have longer delay
requirements than the newly joined member.

Ⅴ. Conclusions

We have presented a scalable data delivery infrastructure
named SDI, for IoT computing environment where we need a
network platform for data providers to share their diverse data
with lots of consumers and for applications to easily access and
receive sensor data from the providers. For efficient data delivery,
this paper proposes a new delivery path management scheme that
carefully exploits the delivery QoS requirements of different
consumers in constructing bandwidth-efficient delivery paths. We
perform primitive experiments on the path construction and
reconstruction which may be major overhead of the scalable
infrastructure. The results show that SDI achieves a high level of
scalability, and demonstrates that the overhead incurred by the
aggressive join phase is not significant.

Acknowledgements

 This work was supported by Hankuk University of Foreign
Studies Research Fund of 2017.

참고문헌

[1] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang and W. Zhao,
"A Survey on Internet of Things: Architecture, Enabling
Technologies, Security and Privacy, and Applications,"
IEEE Internet of Things Journal, vol. 4, no. 5, pp.
1125-1142, Oct. 2017.

[2] Eleonora Borgia, "The internet of things vision: Key
features, applications and open issues," Computer
Communications, 54:1–31, 2014.

[3] Jeong-Rae Cho, Hye-Suk Kim, Doo-Keol Chae, and Suk-Ja
Lim, "Smart CCTV Security Service in IoT Environment,"
Journal of Digital Contents Society, vol. 18, no. 6, pp.
1135-1142, 2017.

[4] Seong-Pyo Hong, "Design and Implementation of amount of
contained water, earth and sand Monitoring System based on
IoT," Journal of Digital Contents Society, vol. 18, no. 4, pp.
787-793, 2017.

[5] B. B. P. Rao, P. Saluia, N. Sharma, A. Mittal and S. V.
Sharma, "Cloud computing for Internet of Things & sensing
based applications," in Proceedings of Sixth International
Conference on Sensing Technology (ICST), Kolkata, pp.
374-380, 2012.

[6] Dongyu Wang, Dixon Lo, Janak Bhimani, Kazunori Sugiura,
"AnyControl -- IoT Based Home Appliances Monitoring and
Controlling", in Proceedings of the IEEE Annual Computer
Software and Applications Conference (COMPSAC),
Taichung, vol. 3, pp. 487-492, 2015.

[7] M. Chiang and T. Zhang, "Fog and IoT: An Overview of
Research Opportunities," IEEE Internet of Things Journal,
vol. 3, no. 6, pp. 854-864, Dec. 2016.

[8] G. Daneels et al., "Real-Time data dissemination and
analytics platform for challenging IoT environments," in
Proceedings of Global Information Infrastructure and
Networking Symposium (GIIS), St. Pierre, pp. 23-30, 2017.

[9] Sasu Tarkoma, Publish/subscribe systems: design and
principles, John Wiley & Sons, 2012.

[10] D. Sarkar, N. Rakesh and K. K. Mishra, "Content delivery
networks: Insights and recent advancement," in Proceedings
of Fourth International Conference on Parallel, Distributed

그림 6. 평균 Join 연산 횟수

Fig. 6. Average Number of Join Operations

그림 5. 경로 관리 오버헤드

Fig. 5. Path Management Overhead

하위 훈련 성과 융합을 위한 순환적 계층 재귀 모델

413 http://www.dcs.or.kr

and Grid Computing (PDGC), Waknaghat, pp. 1-5, 2016.
[11] H. Yin, X. Liu, G. Min, C. Lin, "Content Delivery

Networks: a Bridge between Emerging Applications and
Future IP Networks," IEEE Network, vol. 24, no. 4, pp.
52-56, 2010.

[12] B. Zhang, T. S. E. Ng, A. Nandi, R. Riedi, P. Druschel, and
G. Wang, "Measurement based analysis, modeling, and
synthesis of the Internet delay space," IEEE/ACM
Transactions on Networking, vol. 18, no. 1, pp. 229-242,
2010.

이윤석 (Yunseok Rhee)

1988년 : 서울대학교 계산통계학(학사)

1995년 : KAIST 정보통신공학 (석사)

1999년 : KAIST 전산학 (박사)

1988년～1993년: 시스템공학연구소 연구원

1999년 : IBM Watson 연구소 방문연구원

1999년～현재: 한국외국어대학교 컴퓨터공학부 교수

※관심분야： 분산병렬시스템, 운영체제, 인터넷 서비스

