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[요    약]  

최근 사물인터넷(IoT) 기술의 발전과 함께 수많은 센서와 소형 구동장치들로 구성된 새로운 컴퓨팅 환경이 도래했다. 본 논문은 

이와 같은 IoT 기반 컴퓨팅 환경에서 데이터 제공자들과 소비자들 사이에 센싱 데이터를 쉽게 공유하고 접근하도록 지원하는 공

유 플랫폼으로서, 확장성있는 데이터 전송 기반구조를 제안한다. 확장성과 효율성을 제공하기 위해, 이 논문은 특히 소비자들 간

의 서로 다른 QoS 요구사항을 활용하여 전송 대역폭을 효과적으로 활용한 전송 경로를 구성하는 방법을 제시한다. 전송경로 구성

과 재구성 과정이 제안하는 구조의 가장 큰 오버헤드로 판단되므로, 본 논문에서는 그 비용을 산정하는 기본적인 실험을 수행하였

는데, 결과는 제안된 구조의 우수한 확장성에 비해 오버헤드는 비교적 적은 것으로 확인되었다. 

[Abstract] 

In this paper, we present a scalable data delivery infrastructure for such IoT computing environment where we need a common 
platform where data providers share their diverse sensing data and  applications can easily access and receive such data from 
providers. For efficient data delivery, this paper proposes a new delivery path management technique that take advantage of 
diverse consumer QoS when building bandwidth-efficient delivery paths. We perform primitive experiments on the path 
construction and reconstruction which may be major overhead of the scalable infrastructure. The results show that the proposed 
infrastructure achieves a high level of scalability, and demonstrates that the management overhead is not significant.
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Ⅰ. Introduction

The rapid advance of Internet of Things (IoT) technologies has 
opened up a new computing environment with a myriad of 
sensors and tiny devices. It enables numerous sensing real-time 
applications to grow in scale, complexity, and diversity. In 
addition to static sensor networks, recent IoT technologies tend to 
enrich such applications in a more dynamic and instant fashion 
[1-4]. In particular, mobile sensing nodes such as mobile phones 
and vehicles with sensors are promoting the practical use and the 
deployment of such dynamic sensor networks [5,6].

Also, recent fog networking enables lots of computing devices 
to interact at edge nodes of a network, and results in fully 
distributed data and application processing [7]. These 
network-centric computing environments require a QoS-aware 
data delivery infrastructure that efficiently shares limited network 
resources while meeting the service requirements of each 
application [8]. Without these infrastructures, building an 
infrastructure for each application is not easy nor inefficient.

These real-time detection applications must continually 
monitor the current state of a particular entity or situation in a 
particular region so that application users can provide 
context-aware services in a timely manner. The applications have 
requirements for a new type of delivery service. Depending on the 
application users’ business or personal purposes, users want to 
observe data of interest in different QoS levels of detail, and the 
applications need real-time delivery in the sense that they receive 
data within the quality of service to perform agile actions.

Ⅱ. Network Architecture 

We present a scalable data delivery infrastructure, in short 
SDI, for continuous sensing applications in IoT environments. As 
in Fig. 1, the infrastructure relies on a collection of nodes that are 
strategically located. Data providers and consumers connect to 
SDI through nearby SDI nodes. For each data provider, SDI 
forms an efficient delivery path along with the data from the 
supplier to all interested consumers. Data consumers receive data 
delivery service through SDI according to the following 
procedure based on the publish/subscribe system [9-11]. 

First, the service description for the sensor network is obtained 
through the SDI portal, which helps consumers to search for 
interesting IoT networks with relevant information such as 
supplier ID, location, data  type, and so on. According to the 
service description, each consumer creates a query specifying 
his/her requirement. The query is then forwarded to the SDI 

portal for registration. Upon receipt of the query, the SDI portal 
designates the closed SDI node to the consumer as a proxy. When 
SDI establishes an end-to-end delivery path from a provider to a 
designated proxy node, a consumer receives the data of interest 
through the assigned SDI nodes within an tolerable delay. A 
similar process allows data providers to publish data to consumers 
through SDI. Each provider that owns a sensor network registers 
network specifications which contains network ID, data schema, 
data rate, and network description, etc. 

As shown in Fig. 2, SDI nodes are hierarchically organized for 
scalable network management, and nodes are clustered based on 
network proximity. With an appropriately sized cluster unit, the 
SDI network is managed in a two-level hierarchy of these 
clusters. The hierarchy can be extended to more levels if 
necessary, but for simplicity, we consider only two levels in this 
work. In each cluster, one of the SDI nodes is elected as a local 
head. With all the local heads, a second-level cluster is formed 
and one of them is elected as a global head. Each local or global 
head node must be located near the center of its cluster for 
efficient cluster management; the node with the least sum of 
network latencies to other members within its cluster is chosen as 
a head node. The head node manages the size of the cluster (i.e., 
the number of nodes in the cluster), and splits a large cluster or 
merges small clusters so as to keep the size of each cluster within 
a certain range. The head node maintains information about each 
member node such as available bandwidth, latencies to other 
member nodes from the node, etc. The information is used not 
only for cluster management, but also for efficient delivery path 
management. 

A data delivery path is established based on the cluster-based 
hierarchy mentioned above. That is, a node is responsible to 
deliver data to all member nodes in its cluster, and also creates a 
tree rooted at the node. We refer to the tree formed in each local 
cluster as a local tree and its root node as LPX (Local ProXy), 
respectively. In a local cluster, the first member node, i.e., the 
root of a delivery tree becomes an LPX of the cluster. Similarly, 

그림 1. SDI 서비스 개략

Fig. 1. SDI service overview
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the tree that connects the local trees is referred to as a global tree, 
and its root node as GPX (Global ProXy), respectively. The SDI 
node closest to a provider is chosen as a GPX for the provider, 
which sends data to consumers through the GPX. Since SDI 
consists of one or more delivery paths, An SDI node can act 
differently for each delivery path it serves. GPX and LPX jointly 
manage the delivery path for scalable path management. We 
hereafter refer to both GPX and LPX simply as manager nodes, 
since the operations performed at a GPX or an LPX are almost 
same.

Each manager node is responsible for a small portion of the 
overall delivery path. Based on the node information from its 
local head, it constructs delivery paths connecting all the other 
members in the cluster. For efficient path construction, the 
number of members per manager needs to be less than a hundred. 
We expect that the administrative overhead imposed on each 
manager node is not significant for the SDI network.

Ⅲ. Delivery Path Management

3-1 Delivery Path Model

For simplicity, we focus on the construction and maintenance 
of a single delivery tree. Given a delivery tree for a provider, each 
member, mi,  declares its own QoS requirement, and aggregates 
the requirements of all consumers connected to itself. As an 
example, in this paper, we consider two QoS parameters of data 
volume (or bandwidth) and delay for a member mi, and denote as 
Bi and di, respectively.

An aggregated QoS requirement at a member is defined as the 
accumulation of delivery requirements imposed on all nodes over 
the path from the root to the member mi. As a result, the 
aggregated requirement at mi should meet itself as well as all its 
descendents as in Figure 3. We denote the aggregated 

requirements of data and delay at mi as 
  and 

 , respectively. 

It can be recursively computed from the individual delivery 
requirement of mi and the aggregated ones of mi’s all descendants.

3-2 Selective Forwarding 

Each node is designed to maintain data and forwarding 
requirements on each node with a data structure called a Selective 
Forwarding Table (SFT) to efficiently deliver data to the 
descendants of the node. The forwarding information in an SFT 
contains a list of next members and processing operators that 
must be applied before passing the data to the next member. We 
denote an operator applied at member mi while forwarding 
incoming data to the member mj by Qi,j. The number of 
processing elements, kj, depends on the range of data values 
required by its descendants. Similar to the aggregated 
requirements, a processing operator also specifies the range of 
data values of interest to each subsequent node as well as 
spatial and temporal sampling rates to be applied to incoming 
data streams prior to delivery. Given an operator { <dmin, dmax>, 
restime, resspace}  for the next node mj, the data is forwarded to mj 
at corresponding spatial and temporal sampling rates of restime 
and resspace only when a incoming data meets the range (dmin, 
dmax).  The operator is applied to remove unnecessary data for 
mj. Thus, the next member mj receives data as specified in its 

aggregated data requirement 
 . 

In the example shown in Figure 4(b), the aggregated data 

requirement 
  at m1 is {<(10, 15), 0.25, 0.5>, <(15, 30), 0.5, 

0.5>} and the aggregated delay requirement 
  is 1.7sec, which 

means that m1 requires data between 10 and 15 with spatial and 
temporal resolutions of 0.25 and 0.5, respectively, and those 
between 15 and 30 with spatial and temporal resolutions of 0.5 
and 0.5, respectively, within 1.7sec. The figure also shows an 
SFT construction example at m1 which satisfies the delivery path 
shown in Figure 4(a). In the table, an operator Q1,2, {<(10, 15), 
1.0, 1.0>, <(15, 20), 0.5, 1.0>} is applied at m1 for the member 
m2. Thus, it filters data within (10, 15) or (15, 20), and then 
forwards the data with the associated spatial and temporal 

그림 2. SDI의 계층적 구조

Fig. 2. Hierarchical Structure of SDI

그림 3. 총량화된 QoS 요구사항

Fig. 3. Aggregated QoS requirement 
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sampling rates. The SFT also includes a processing operator Q1,1, 
{<(15, 30), 1.0, 1.0>} for itself, in this example, operation on the 
data from m1  to m1. The operator exists to obtain data that match 
m1’s own delivery requirement. Then, the data is selectively 
delivered to all consumers connected to m1 based on their delivery 
requirements.

3-3 Path Construction 

In this section, we describe delivery path construction which 
may be conducted in an urgency- and similarity-based manner. 
Note that the task determines not only parent-child relationships 
between nodes but also the appropriate processing to be taken at 
each node prior to delivery of incoming data to subsequent nodes. 
We assume that initially only the root member is in a delivery 
tree, and each new member is then added to an existing tree. 

A simple way to add a new member is to select a parent node 
from existing member nodes without changing the existing tree 
structure. It is simple, but the method is not effective in practice. 
First, the insertion of a new member can increase the bandwidth 
requirements of the ancestor members, and potentially exceed the 
available amount. Also, if the new node has a tight delay 
requirement, the situation becomes more complicated. Members 
must be added upward to the tree near to the root due to the 
stringent requirements. However, available bandwidth often 
becomes scarce near the root.

Consider a member trying to join a delivery tree. It first 
contacts the manager node that is responsible for managing the 
tree and the join requests (i.e., the root member in the delivery 
path). Upon request, the manager node selects the best parent 
member for the new member. Note that our member joining 
process does not simply specify an adequate parent member to the 
new member; rather it figures out a valid tree structure that can 

accommodate all of the existing members as well as the new 
member while satisfying their delivery requirements. The join 
process attempts a tree update plan to include a new member, and 
the plan is executed to actually update the delivery tree.

The join process is performed in two phases; (1) normal join 
and (2) aggressive join. The normal join phase conducts to add 
the new member mk while maintaining the current tree structure. 
If a new member cannot be accommodated, it begins an 
aggressive join phase where partial rearrangement is performed to 
accommodate the member. Thus, the aggressive join may cause 
some members to be detached and rejoined later. The join process 
is therefore a recurring iterative process for the new member and 
the detached members. Unless it can find an adequate parent for 
either the new member mk or the other members to rejoin, the join 
process consequently fails. We then determine that the current 
network resources are insufficient to accommodate the new 
member.

Given a new member mk, the normal join phase finds a parent 
member that can deliver data to mk while satisfying the delivery 
requirement. For the purpsose, it first finds parent candidates out 
of all existing members and then selects one that provides the 
most efficient delivery path in terms of bandwidth consumption. 
To determine whether an existing member mp can become the 
parent candidate of mk or not, we check mp with a few conditions 
under the assumption that mp becomes the parent of mk. 

3-4 Path Reconstruction

If no candidate parent meets the previous three conditions on 
bandwidth and delay constraints, an aggressive join phase will 
begin. The aggressive join means that the new member selects its 
parent mp while leaving out some existing children with lower 
priorities in terms of urgency (see Figure 5). This phase is 
performed in two steps as follows. First, even if some conditions 
are violated, the new member is added to the tree by selecting a 
parent. Then, the violations would be eliminated by partially 
reorganizing the tree structure. Prior to the rearrangement, a plan 
must be established to describe the sequence of detachment and 
re-joining of members. This plan should accommodate new 
members as well as existing members after relocation. If an 
adequate plan is not found, the join process fails. We also 
determine that the current network resources are insufficient to 
include the new member. 

In the case of aggressive join phase, the three conditions are 
incrementally alleviated one by one to select a candidate parent. 
Such relaxations allow us to take into an account the members not 
considered in the normal join phase. As before, we let mk be the 
new member and mp be the candidate parent member being tested. 

그림 4. 선택적 전달 구조 예

Fig. 4. Selective Forwarding Structure Example 
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In this requirement relaxation process, a candidate parent is 
selected by iteratively detaching some of its children and 
checking the previous three conditions after the detachment. 
Suppose mp detaches its children with aggregated delay 
requirements greater than mk  (see also Figure 5). The changed 
bandwidth consumption of mp after the detachment is denoted by
″ , and the changed aggregated delay requirement is denoted 

by ″ , respectively. The difference between   and ″   is 

also denoted by ′ . At this time, mp can be a candidate parent if 

it meets these three conditions after the detachment. 

i) Parent bandwidth condition:   ′≤  
ii) Delay condition: ″ ≥  
iii) Ancestor bandwidth condition: 
′≤ ′≤ ′≤ 

If several parent candidates are found, a candidate with the 
best bandwidth saving is selected. We may not find a proper 
candidate for the new member mk, despite the first relaxation. 
Then, in the further relaxation steps, we attempt to alleviate delay 
condition and ancestor's bandwidth condition, each one from the 
above requirement conditions, respectively, to find an adequate 
position while detaching ancestors’ children. 

After selecting a parent for the new member, we establish a 
rearrangement plan to construct a valid delivery tree which 
accommodates the new member. The plan is performed in two 
steps. First, we look up the members with bandwidth violations, 
and select the members to detach. To remove the bandwidth 
violation of a member, we select its child members with the 
longest delay requirement for detachment. The selection can be  
repeated until the bandwidth violation is removed. 

Ⅳ. Experiments

4-1 Experimental Setup

We simulated an virtual network of SDI nodes over the 
network topology modelled by DS2 [12], which specifies static 
round-trip propagation delays between all pairs of network nodes. 
The default number of nodes is set to 4,000 and the default node 
bandwidth to 5Mbps. These parameters are chosen to demonstrate 
the performance of SDI in a large-scale environment where 
delivery paths consist of many nodes with limited bandwidth 
resources. In this experiment, we limit the number of clusters to 
100.

For query workloads, we consider two different scenarios 
which have similar characteristics, but different preferences on 
selecting data providers. In the first, we assume that data 
consumer is a real world navigation application where application 
users want to observe sensing data from all siets worldwide. In 
the second, we assume that data consumer is a mesoscale weather 
forecast application where users are primarily interested in local 
weather information. In the real world navigation applications, 
data providers are selected randomly. On the other hand, in the 
mesoscale weather forecasting applications, the provides are 
selected based on the proximity to data consumers. Based on a 
Zipf distribution, adjacent data providers are selected with high 
probability, whereas distant ones are selected with low 
probability. 

4-2 Path Management Overhead

In this paper, we show the overhead of our path construction 
process. To do this, we measure the average number of join 
operations that are executed to include a new member. Recall that 
our scheme performs path rearrangement to accommodate the 
members that are not included only by the normal join. The 
rearrangement is performed by detaching and rejoining some 
members, and thus additional join operations are executed. To 
clearly show the cost of join operations, a node is allowed to have 
at most one query for each data provider. In this experiment 
setting, a new query registration corresponds to a new member 
join.

Figure 5 compares the path management overheads with the 
normal join only scheme and with normal join and aggressive join 
scheme, respectively. It is obvious that the scheme using 
aggressive joins is more scalable and efficient, but the overhead 
will be quite significant. In the experiments, however, our path 
construction scheme with both the normal and the aggressive join 
phases shows a slightly higher number of join operations, ranging 
from 1.02 to 1.19, compared to the scheme of normal join only. 
This result shows that the overhead by the aggressive join phase 
is not significant. 

To better understand the effects of aggressive joins, we need to 
take a closer look at the results in Figure 6. As described in 
Section 3.2, in the aggressive join phase, the three conditions of 
the normal join phase are mitigated one by one. To show the 
overhead of each join type, we measure the average number of 
actually performed join operations for each join operation. To add 
a new member with a normal join, the join operation needs to be 
executed only once for the new member itself. However, to add 
the member with an aggressive join, more than one join operation 
is required because the aggressive join may generate a few rejoin 
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operations. In the case of the relaxation, about 3.5 join operations 
are required, generating 2.5 rejoin operations on the average. The 
rejoined members are the ones that have longer delay 
requirements than the newly joined member.

Ⅴ. Conclusions

We have presented a scalable data delivery infrastructure 
named SDI, for IoT computing environment where we need a 
network platform for data providers to share their diverse data 
with lots of consumers and for applications to easily access and 
receive sensor data from the providers. For efficient data delivery, 
this paper proposes a new delivery path management scheme that 
carefully exploits the delivery QoS requirements of different 
consumers in constructing bandwidth-efficient delivery paths. We 
perform primitive experiments on the path construction and 
reconstruction which may be major overhead of the scalable 
infrastructure. The results show that SDI achieves a high level of 
scalability, and demonstrates that the overhead incurred by the 
aggressive join phase is not significant. 
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