DOI QR코드

DOI QR Code

Shielding Capability Evaluation of Mobile X-ray Generator through the Production assembled Shield

일체형 방어벽 제작을 통한 이동형 엑스선 발생기의 차폐능 평가

  • 김승욱 (남부대학교 방사선학과) ;
  • 안병주 (남부대학교 방사선학과)
  • Received : 2018.12.23
  • Accepted : 2018.12.31
  • Published : 2018.12.30

Abstract

As modern science is developed and advanced, examination and number of times using radiation are increasing daily. General diagnostic X-ray generator is installed on stationary form, But X-ray generator was developed because patient who is in the intensive care unit, operation room, emergency room can not move to general x-ray room. What we examine patient by x-ray generator is certainly necessary, So patient exposure is inevitable. but reducing radiation exposure is highly important matter about radiation technology, guardian, patient in the same hospital room, nurse etc. For this reason, rule regarding safety control of diagnostic x-ray generator revised for radiation worker, patient and protector proclaim that mobile diagnostic x-ray shield must placed in case of examine different location excluding operation room, emergency room, intensive care unit. But, radiogical technologist is having a lot of difficulties to examine with mobile x-ray generator, diagnostic x-ray shield partition, image plate and lead apron. So, when we use x-ray generator, we manufacture shield tools can be attached to the mobile x-ray generator On behalf of x-ray shield partition and conduct analysis and in comparison to part of body and distribution of dose rate and find way to reduce radiation exposure through distribution of dose rate of patient within the radiogical technologist, medical team. Mobile x-ray generator aimed at SHIMADZU inc. R-20, We manufactured equipment for shielding x-ray scattered x-ray by installing shielding wall from side to side based on support beam on the mobile x-ray generator. Shielding wall when moving can be folded and designed to expand when examine. Experiment measured five times in each by an angle for dose rate of eyes, thyroid, breast, abdomen and gonad on exposure condition of upper and lower extremity, chest, abdomen which is examined many times by mobile x-ray generator. We used dosimeter RSM-100 made by IJRAD and measured a horizontal dose rate by body part. The result of an experiment, shielding decreasing rate of the front and the rear showed 77 ~ 98.7%. Therefore using self-production shielding wall reduce scattered x-ray occurrence rate and confirm can decrease exposure dose consequently. Therefore, through this study, reduction result which is used shielding wall of self-production will be a role of shielding optimization and it could be answer about reduction of medical exposure recommended by ICRP 103.

의료방사선의 관리에서 가장 중요한 사항은 진료의 적정성을 확보하면서 방사선위해를 최소화하는 것이다. 국제원자력기구는 진단방사선 분야의 선량 감소 방법에 대한 지침서를 만들어 환자피폭선량을 측정하여 각 국가에 사용하도록 권고하고 있다. 또한 국내에서도 우리나라의 실정에 맞게 각 촬영마다 환자 피폭 선량값을 연구하여 진단참고준위를 제시하였다.환자가 질병 때문에 방사선 진료를 받는 것은 방사선 때문에 일어날 수 있는 위해보다 그것으로 얻어지는 이익이 크기 때문이다. 병실 이동검사와 같이 자신의 질병과 무관하게 방사선에 노출되는 환자 및 보호자들의 피폭을 줄이기 위해서는 환자, 방사선사, 의사 및 의료기관의 노력이 가장 중요하다.이에 본 연구에서는 개선방안의 일환으로 MG로 병실의 이동 검사에 대한 문제점을 제시하고 이 문제점을 근거로 하여 산란선으로 예상되는 공간선량률을 분석하였다. MG에 자체 개발한 방어벽을 설치하여 방어벽 설치 전후의 공간선량률을 측정하여 그 감소율을 분석하였다. 최종적으로 이 자료들을 종합하여 MG에 방어벽을 부착하여 방사선사의 병실이동에 대한 부담감의 최소화, 병실 이동검사로 인한 방사선사, 환자 및 보호자를 방사선 노출로부터 보호하고, 검사로 인한 주위 환자 및 보호자의 불편을 최소화하는데 의의가 있다. 이와 같은 개선안에 대해 보다 효율적인 시행을 위하여 MG에 대한 새로운 법 제도가 마련되면, 향후 예상되는 비용, 인력, 고객만족도 및 더욱 더 안정적인 피폭감소방안이 정착될 것이라 사료된다.

Keywords

BSSHB5_2018_v12n7_895_f0001.png 이미지

Fig. 1. SHIMADZU (R-20).

BSSHB5_2018_v12n7_895_f0002.png 이미지

Fig. 2. Mobile X-ray Generator Data (m).

BSSHB5_2018_v12n7_895_f0003.png 이미지

Fig. 3. Mobile X-ray Generator Production assembled Shield Image (m).

BSSHB5_2018_v12n7_895_f0004.png 이미지

Fig. 4. Mobile X-ray Generator Installed with a assembled Shield.

BSSHB5_2018_v12n7_895_f0005.png 이미지

Fig. 5. Spatial Dose Rates for Measurement Method.

BSSHB5_2018_v12n7_895_f0006.png 이미지

Fig. 6. Dose Rate before Shieldng by Upper-Lower Exposure Condition.

BSSHB5_2018_v12n7_895_f0007.png 이미지

Fig. 7. Dose Rate after Shieldng by Upper-Lower Exposure Condition.

BSSHB5_2018_v12n7_895_f0008.png 이미지

Fig. 8. Body Part Reduction Rate after-before Shield by Upper-Lower Exposure Condition.

BSSHB5_2018_v12n7_895_f0009.png 이미지

Fig. 9. Dose Rate before Shielding by Abdomen Exposure Condition.

BSSHB5_2018_v12n7_895_f0010.png 이미지

Fig. 10. Dose Rate after Shielding by Abdomen Exposure Condition.

BSSHB5_2018_v12n7_895_f0011.png 이미지

Fig. 11. Body Part Reduction Rate after-before Shield by Abdomen Exposure Condition.

BSSHB5_2018_v12n7_895_f0012.png 이미지

Fig. 12. Dose Rate before Shielding by Chest Exposure Condition.

BSSHB5_2018_v12n7_895_f0013.png 이미지

Fig. 13. Dose Rate after Shielding by Chest Exposure Condition.

BSSHB5_2018_v12n7_895_f0014.png 이미지

Fig. 14. Body Part Reduction Rate After-Before Shield by Chest Exposure Condition

BSSHB5_2018_v12n7_895_f0015.png 이미지

Fig. 15. Horizontal Spatial Dose Rate before Shielding by Upper-Lower Exposure Condition.

BSSHB5_2018_v12n7_895_f0016.png 이미지

Fig. 16. Horizontal Spatial Dose Rate after Shielding by Upper-Lower Exposure Condition.

BSSHB5_2018_v12n7_895_f0017.png 이미지

Fig. 17. Horizontal Spatial Dose Reduction Rate After-Before Shield by Upper-Lower Exposure Condition.

BSSHB5_2018_v12n7_895_f0018.png 이미지

Fig. 18. Horizontal Spatial Dose Rate before Shielding by Abdomen Exposure Condition.

BSSHB5_2018_v12n7_895_f0019.png 이미지

Fig. 19. Horizontal Spatial Dose Rate after Shielding by Abdomen Exposure Condition.

BSSHB5_2018_v12n7_895_f0020.png 이미지

Fig. 20. Horizontal Spatial Dose Reduction Rate after-before Shield by Abdomen Exposure Condition.

BSSHB5_2018_v12n7_895_f0021.png 이미지

Fig. 21. Horizontal Spatial Dose Rate before Shielding by Chest Exposure Condition.

BSSHB5_2018_v12n7_895_f0022.png 이미지

Fig. 22. Horizontal Spatial Dose Rate after Shielding by Chest Exposure Condition.

BSSHB5_2018_v12n7_895_f0023.png 이미지

Fig. 23. Horizontal Spatial Dose Reduction Rate After-Before Shield by Chest Exposure Condition.

Table 1. Exposure Condition of Body Part

BSSHB5_2018_v12n7_895_t0001.png 이미지

Table 2. Dose Rate of Body Part by Upper-Lower Exposure Condition

BSSHB5_2018_v12n7_895_t0002.png 이미지

Table 3. Body Part Reduction Rate after-before Shield by Upper-Lower Exposure Condition

BSSHB5_2018_v12n7_895_t0003.png 이미지

Table 4. Dose Rate of Body Part by Abdomen Exposure Condition

BSSHB5_2018_v12n7_895_t0004.png 이미지

Table 6. Dose Rate of Body Part by Chest Exposure Condition

BSSHB5_2018_v12n7_895_t0005.png 이미지

Table 5. Body Part Reduction Rate After-Before Shield by Abdomen Exposure Condition

BSSHB5_2018_v12n7_895_t0006.png 이미지

Table 7. Body Part Reduction Rate After-Before Shield by Chest Exposure Condition

BSSHB5_2018_v12n7_895_t0007.png 이미지

Table 8 Horizontal Spatial Dose Rates by Upper-Lower Exposure Condition

BSSHB5_2018_v12n7_895_t0008.png 이미지

Table 9. Horizontal Spatial Dose Reduction Rate After-Before Shield by Upper-Lower Exposure Condition

BSSHB5_2018_v12n7_895_t0009.png 이미지

Table 10. Horizontal Spatial Dose Rates by Abdomen Exposure Condition

BSSHB5_2018_v12n7_895_t0010.png 이미지

Table 11. Horizontal Spatial Dose Reduction Rate After-Before Shield by Abdomen Exposure Condition

BSSHB5_2018_v12n7_895_t0011.png 이미지

Table 12. Horizontal Spatial Dose Rates by Chest Exposure Condition

BSSHB5_2018_v12n7_895_t0012.png 이미지

Table 13. Horizontal Spatial Dose Reduction Rate after-before Shield by Chest Exposure Condition

BSSHB5_2018_v12n7_895_t0013.png 이미지

References

  1. H. K, Min, The study for performance, image quality and patient dose of various diagnostic X-ray generator, Doctoral Dissertation, Graduate School Inje University, 2012.
  2. Ministry of Food and Drug Safety, Patient dose measurement guideline, 2008.
  3. H. S. Kim, J. Y. Oh, Y. C. Kim, "A 16kw Rotating Anode type Monoblock X-ray Generator," The Transactions of the Korean Institute of Power Electronics, Vol. 11, No. 2, pp. 97-103, 2006.
  4. Patricia A. Skundberg, "Principles of Radiographic Imaging: An Art and a Science," Radiology, Vol. 191, No. 2, pp. 522, 1994. https://doi.org/10.1148/radiology.191.2.522
  5. D. M. Kwon, M. H. Park, H. D. Nam, "Measurement of the Scattered Spatial Dose Distribution for the Mobile X-ray Radiography," Journal of Korean Society of radiological technology, Vol. 24, No. 1, pp. 23-26, 2001.
  6. R. E. Grazer, H. W. Meislin, B.R. Westerman, E.A. Criss "Exposure to ionizing radiation in the emergency department from commonly performed portable radiographs," Annals of emergency medicine, Vol. 16, No. 4, pp. 417-420, 1987. https://doi.org/10.1016/S0196-0644(87)80363-3
  7. D. L. Ciraulo, C. P. Marini, G. T. Lloyd, J. Fisher, "Do surgical residents, emergency medicine physicians, and nurses experience significant radiation exposure during the resuscitation of trauma patients?," Journal of Trauma and Acute Care Surgery. Vol. 36, No. 5, pp.703-705, 1994. https://doi.org/10.1097/00005373-199405000-00018
  8. E. K. Kim, "Leakage and scattered radiation from hand-held dental x-ray unit," Korean journal of oral and maxillofacial radiology, Vol. 37, No. 2, pp. 65-68, 2007.
  9. J. G. Choi, G. S. Kim, B. G. kim, et. al., "Improvement Way for Mobile X-ray Examinations by Rule Revision about Safety Management of Diagnosis Radiation Occurrence System," Journal of radiological science and technology, Vol. 30, No. 1, pp. 53-59, 2007.
  10. Ministry of Health and Welfare. Rules for safety management of diagnostic radiation generators. Sejong: Ministry of Health and Welfare, No. 528, 2010.
  11. B. Y. Koo, S. H. Han, "A Study on the Performance Evaluation of Portable Radiation Shielding Apparatus," Journal of radiological science and technology, Vol. 41, No. 4, pp. 289-295, 2018. https://doi.org/10.17946/JRST.2018.41.4.289
  12. Y. H. Kim, J. H. Choi, S. S. Kim, Y. H. Oh, C. H. Lee, P. K. Cho, "Patient exposure doses from medical x-ray examinations in Korea," Journal of radiological science and technology, Vol. 28, No. 3, pp. 241-248, 2005.