DOI QR코드

DOI QR Code

A Study on the Design of the Grid-Cell Assessment System for the Optimal Location of Offshore Wind Farms

해상풍력발전단지의 최적 위치 선정을 위한 Grid-cell 평가 시스템 개념 설계

  • Lee, Bo-Kyeong (Department of Ship Operation, Korea Maritime and Ocean University) ;
  • Cho, Ik-Soon (Department of Ship Operation, Korea Maritime and Ocean University) ;
  • Kim, Dae-Hae (Department of Ship Operation, Korea Maritime and Ocean University)
  • 이보경 (한국해양대학교 선박운항과) ;
  • 조익순 (한국해양대학교 선박운항과) ;
  • 김대해 (한국해양대학교 선박운항과)
  • Received : 2018.10.29
  • Accepted : 2018.12.28
  • Published : 2018.12.31

Abstract

Recently, around the world, active development of new renewable energy sources including solar power, waves, and fuel cells, etc. has taken place. Particularly, floating offshore wind farms have been developed for saving costs through large scale production, using high-quality wind power and minimizing noise damage in the ocean area. The development of floating wind farms requires an evaluation of the Maritime Safety Audit Scheme under the Maritime Safety Act in Korea. Floating wind farms shall be assessed by applying the line and area concept for systematic development, management and utilization of specified sea water. The development of appropriate evaluation methods and standards is also required. In this study, proper standards for marine traffic surveys and assessments were established and a systemic treatment was studied for assessing marine spatial area. First, a marine traffic data collector using AIS or radar was designed to conduct marine traffic surveys. In addition, assessment methods were proposed such as historical tracks, traffic density and marine traffic pattern analysis applying the line and area concept. Marine traffic density can be evaluated by spatial and temporal means, with an adjusted grid-cell scale. Marine traffic pattern analysis was proposed for assessing ship movement patterns for transit or work in sea areas. Finally, conceptual design of a Marine Traffic and Safety Assessment Solution (MaTSAS) was competed that can be analyzed automatically to collect and assess the marine traffic data. It could be possible to minimize inaccurate estimation due to human errors such as data omission or misprints through automated and systematic collection, analysis and retrieval of marine traffic data. This study could provides reliable assessment results, reflecting the line and area concept, according to sea area usage.

최근 국제적으로 풍력, 태양광, 파도, 연료전지 등의 친환경 신재생에너지 개발이 활발하다. 특히, 해상에서의 풍력발전단지 개발은 대형화를 통한 단가 절감, 고품질의 풍력자원 활용, 발전기로 인한 소음 피해 최소화를 위해 해안에서 멀리 떨어진 위치에 대규모 부유식으로 건설되는 추세이다. 풍력발전단지의 개발은 해사안전법에 의한 해상교통안전진단제도에 따른 평가가 필요하다. 풍력발전단지의 평가는 해당 수역의 체계적인 개발, 관리, 활용을 위해 선과 면적 개념을 모두 적용하여 수행되어야 하며, 이를 위한 평가 방법과 기준이 개발되어야 한다. 이 연구에서는 해상풍력발전단지처럼 해양 공간을 평가할 수 있는 해상교통조사방법과 평가에 대한 적절한 기준을 수립하고, 이를 시스템적으로 처리할 수 있는 방안에 대해서 연구하였다. 먼저 해상교통조사를 위해 AIS와 레이더를 이용한 이동식 해상교통데이터 수집장치를 설계하였다. 그리고 선과 면적의 개념을 모두 적용한 해상교통 항적도, 밀집도, 경로 분석을 제안하였다. 해상교통밀집도는 Grid-cell의 크기를 조절하여 단위 cell에 대한 공간적, 시간적 점유율을 구분하고 해상교통 경로 분석은 해상을 통항로 또는 작업 공간으로 사용할 때를 구분하여 선박의 이동 패턴을 평가할 수 있도록 제안하였다. 최종적으로 시스템적인 해상교통데이터의 수집과 평가가 가능한 해상교통안전평가솔루션의 개념설계를 수행하였다. 이는 자동적인 해상교통데이터의 수집 저장 분류를 통해, 데이터 누락이나 오표기와 같은 인적 오류를 최소화하고 해상 공간의 용도에 따라 선과 면적 개념을 반영하여 분석함으로써 신뢰성 있는 해상 공간의 평가가 가능하게 한다.

Keywords

References

  1. Bole, A., B. Dineley and A. Wall (2005), Radar and ARPA Manual, 2nd Edition, Elsevier's Science & Technology, pp. 192-193.
  2. Ishida, M. (2017), Japan's First Commercial Operation of Floating Body Type Offshore Wind Power Generation_In Goto City, Nagasaki Prefecture, We Aim to Live in Harmony with the Fishing Industry, Utilization of Natural Energy Report, No. 10, p. 1.
  3. ITU-R (2014), Radiocommunication Sector of International Telecommunication Union, ITU-R M.1371-5, Technical characteristics for an automatic identification system using time division multiple access in the VHF maritime mobile frequency band, p. 114.
  4. Jung, C. H., Y. S. Park, D. G. Yoon and M. S. Choi (2016), A Study on the Development of an Early Detection System for Altering Course of a Target Ship, Journal of the Korean Society of Marine Environment & Safety, Vol. 22, No. 6, p. 626.
  5. Kim, S. W., Y. S. Lee, J. G. Kim, J. K. Kim, Y. J. Ahn, D. H. Kim and M. R. Cho (2015), Marine Traffic Safety and Ship's Navigation Safety Assessment according to East Sea 2 Gas Platform Project, pp. 53-54.
  6. NLIC (2017), National Law Information Center, Enforcement Regulation on the Maritime Safety Audit Scheme, http://www.law.go.kr/admRulSc.do?tabMenuId=tab107&query=%ED%95%B4%EC%83%81%EA%B5%90%ED%86%B5#AJAX. (25th Oct. 2018).
  7. NLIC (2018), National Law Information Center, Enforcement Decree of the Maritime Safety Act, http://www.law.go.kr/lsSc.do?tabMenuId=tab18&query=%ED%95%B4%EC%82%A C%EC%95%88%EC%A0%84%EB%B2%95#AJAX. (25th Oct. 2018).
  8. Owano, N. (2018), Three Months Show Hywind Scotland Floating Wind Farm Exceeding Expectations, p. 1.
  9. UKHO(2017), United Kingdom Hydrographic Organization (2017/18), NP285: Admiralty List of Radio Signals: Global Maritime Distress and Safety System, p. 112.

Cited by

  1. 유전 알고리즘을 활용한 부유식 해상풍력단지 최적위치 선정 vol.25, pp.6, 2018, https://doi.org/10.7837/kosomes.2019.25.6.658
  2. AIS 기반 해양시설물과 선박간 권고 안전이격거리 선정에 관한 연구 vol.43, pp.6, 2018, https://doi.org/10.5394/kinpr.2019.43.6.420
  3. An Investigation of the Ship Safety Distance for Bridges across Waterways Based on Traffic Distribution vol.8, pp.5, 2018, https://doi.org/10.3390/jmse8050331
  4. Verification of Novel Maritime Route Extraction Using Kernel Density Estimation Analysis with Automatic Identification System Data vol.8, pp.5, 2018, https://doi.org/10.3390/jmse8050375
  5. A Study on the Estimation of Optimal Traffic Distribution near Breakwater in Busan Port vol.4, pp.4, 2018, https://doi.org/10.1080/25725084.2020.1861824
  6. 해상풍력 발전단지에 의한 GMDSS MF/HF 대역 전자파 간섭 영향 연구 vol.27, pp.1, 2021, https://doi.org/10.7837/kosomes.2021.27.1.047
  7. A Study on the Design of Coastal Fairway Width Based on a Risk Assessment Model in Korean Waterways vol.12, pp.3, 2018, https://doi.org/10.3390/app12031535