DOI QR코드

DOI QR Code

A Numerical Study on the Selection of Main Specification of the 18.5ft Bass Fishing Boat

18.5ft급 경기용 배스보트의 주요제원 선정에 관한 수치해석 연구

  • Lim, Jun-Taek (Department of Naval Architecture & Ocean Engineering, Mokpo National Maritime University) ;
  • Seo, Kwang-Cheol (Department of Naval Architecture & Ocean Engineering, Mokpo National Maritime University) ;
  • Park, Geun-Hong (Department of Naval Architecture & Ocean Engineering, Mokpo National Maritime University) ;
  • Kim, Sang-Won (Department of Mechanical and Space Engineering, Hokkaido University)
  • 임준택 (목포해양대학교 조선해양공학과) ;
  • 서광철 (목포해양대학교 조선해양공학과) ;
  • 박근홍 (목포해양대학교 조선해양공학과) ;
  • 김상원 (홋카이도 대학교 기계우주공학)
  • Received : 2018.10.02
  • Accepted : 2018.12.28
  • Published : 2018.12.31

Abstract

Recently, bass fishing has become a marine leisure sport in Korea. There are 4 major fishing associations in Korea, and each association holds 10-15 tournaments each year. However, supply of 17 ft bass boats, which are preferred in leagues, depends 100 % on imports. In this study, we have derived the main specifications to develop the initial hull forms of a 18.5ft bass boat through statistical analysis based on mothership data. In addition, CFD numerical analysis was carried out according to deadrise angle and longitudinal center of gravity, which strongly influenced the resistance and planing performance. For numerical analysis, design speed was set to $Fn=3.284 (Re=9.858{\times}10^7)$, the deadrise angle was set from 12 to $20^{\circ}$, and the longitudinal center of gravity was set in the range of 0 to $8%L_{wL}$ from the center of buoyancy to the stern. Based on the numerical results, we first set the range of these factors by resistance performance and immersion keel length. Furthermore, using a correlation graph of Savitsky's Drag-Lift ratio, we derived the deadrise angle ($14-16^{\circ}$) and longitudinal center of gravity ($4-6%L_{wL}$).

최근 국내에서 배스낚시는 하나의 해양레저 스포츠로서 자리매김하고 있다. 국내 배스 낚시협회는 총 4곳이 있으며 각 협회당 매년 10~15회의 토너먼트 대회를 개최하는 등 수요가 높은 편이다. 그러나 국내 대회에서 선호되는 17ft 이상 급의 배스보트의 경우 현재 100 % 수입에 의존하고 있는 실정이다. 본 연구에서는 해외실적선 자료를 바탕으로 통계분석을 통해 18.5ft급 경기용 배스보트의 초기선형 개발을 위한 주요제원을 도출하였다. 또한 활주선의 저항 및 활주성능에 큰 영향을 미치는 선저경사각 및 종방향 무게중심에 따른 CFD 수치해석을 수행하였다. 수치해석의 경우, 설계 속도인 $Fn=3.284 (Re=9.858{\times}10^7)$에 대해서 수행하였고, 선저 경사각은 $12{\sim}20^{\circ}$, 종방향 무게중심은 부력중심으로부터 선미방향으로 $0{\sim}8%L_{WL}$의 범위로 설정하였다. 수치해석 결과를 바탕으로, 1차적으로 저항성능과 침수용골 길이를 바탕으로 범위를 설정한 후, Savitsky의 Drag-Lift ratio의 상관그래프를 이용하여 최적 트림각에 근접한 선저경사각($14{\sim}16^{\circ}$), 종방향 무게중심위치($4{\sim}6%L_{WL}$)의 범위를 도출하였다.

Keywords

References

  1. Battistin D. and A. Iafrrati(2003), A Numerical Model for Hydrodynamoc of planing Surfaces, Proc. 7th Int. Conf. Fast Sea Transportation FAST2003.
  2. Begovic, E. and C. Bertorello(2012), Resistance assessment of warped hull forms, Ocean Eng. 56, pp. 28-42. https://doi.org/10.1016/j.oceaneng.2012.08.004
  3. Caponetto, M. (2001), Practical CFD Simulations for planing hulls, HIPER.
  4. Jeong, U. C., J. W. Park and S. H. Jeong(2004), Hull Form Development of a Small-Size High-Speed Coastal Leisure Boat. Journal of Ocean Engineering and Technology, Vol. 18, No. 1, pp. 80-84.
  5. Kihara, K. and T. Ishii(1986), A New Method of Initioal Design for High Speed Craft(2), Trans. of WJSNA, Vol. 72, pp. 293-300.
  6. Kim, D. H., I. D. Seo, K. P. Rhee, N. W. Kim and J. H. Ahn(2015), A model Test Study on th Effect of the Stern Interceptor for the Reduction of the Resistance and Trim Angle for Wave-piercing Hulls, Journal of the Society of Naval Architects of Korea, Vol. 52, No. 6, pp. 485-493. https://doi.org/10.3744/SNAK.2015.52.6.485
  7. Kim, J. N., U. C. Jeong, J. W. Park and D. J. Kim(2006), A Study on the Initial Hull Form Development and Resistance Performance of a 45 Knots Class High-Speed Craft, Journal of Ocean Engineering and Technology, Vol. 20, No. 1, pp. 32-36.
  8. Kim, S. W., K. C. Seo, D. K. Lee and G. W. Lee(2017), A Numerical Study on Motion Control of Wave-Piercing High-Speed Planing Craft in Calm Water using Appendages. Journal of the Korean Society of Marine Environment & Safety, Vol. 23, No. 3, pp. 320-329. https://doi.org/10.7837/kosomes.2017.23.3.320
  9. Koelbel, J. G. (1978), Performance Prediction, Small Craft Engineering Resistance, Propulsion and Sea keeping. SNAK
  10. Laroche, D., R. Connolly, C. Elie and M. Gundjian(2000), Thermoforming Simulation and Experimental Validation on a Bass Boat Hull, ANTEC 2000 Conference proceedings, Vol. 2, pp. 778-782.
  11. Mercello, I. (2015), Hydrodynamics of Planing hull by CFD, Thesis for the Degree of Master of Science.
  12. Niwa, S. (2002), Engineering of High Speed Boat (Resistance and Propulsion), A Foundation of Ship and Ocean (in Japanese).
  13. Savitsky, D. (1964), Hydrodynamic Design of Planing Hulls. Marine Technology, Vol. 1, No. 1, pp. 71-95.