DOI QR코드

DOI QR Code

Mini-review: oomycete RXLR genes as effector-triggered immunity

  • Arif, Saima (Department of Applied Biology, College of Agriculture & Life Sciences, Chungnam National University) ;
  • Jang, Hyun A (Department of Applied Biology, College of Agriculture & Life Sciences, Chungnam National University) ;
  • Kim, Mi-Reu (Department of Applied Biology, College of Agriculture & Life Sciences, Chungnam National University) ;
  • Oh, Sang-Keun (Department of Applied Biology, College of Agriculture & Life Sciences, Chungnam National University)
  • Received : 2018.11.30
  • Accepted : 2018.12.17
  • Published : 2018.12.31

Abstract

Oomycetes are known to secrete a vast arsenal of effectors that modulate the host defense system as well as facilitate establishing a parasitic infection in plants. In recent years, tremendous progress has been made in the field of effectromics based on studies of oomycetes, especially the cytoplasmic family of RXLR effectors. Yet, the biology of the RXLR effector family is still poorly understood. There has been a consensus regarding the structure of the RXLR motif in the mycologist community. However, the function of the RXLR motif is still unclear. First, different models have suggested that the role of the RXLR motif is either in translocation to a target destination inside a host cell or in the cleavage of itself followed by secretion. Second, recent studies have suggested different functional models for the RXLR motif. According to a widely accepted model, the RXLR motif is directly involved in the translocation of effectors to target sites. In contrast, a new study has proposed that the RXLR motif is involved in secretion rather than translocation. Thus, this review is an attempt to summarize the recent advances made in the functional analysis of the N-terminal domain of RXLR effectors.

Keywords

CNNSA3_2018_v45n4_561_f0001.png 이미지

Fig. 1. Domain organization of cytoplasmic RXLR effectors. Schematic drawings of PiAVR3a of Phytophthora infestans (Bos et al., 2006), PiAvrblb1 and PiAvrblb2 of P. infestans (Vleeshouwers et al., 2008; Oh et al., 2009; Oh et al., 2010), Avr1b-1 of P. sojae (Shan et al., 2004), and HpATR13 of Hyaloperonsopora parasitica (Allen et al., 2004). The numbers under the sequences indicate the amino-acid positions. The highlighted RXLR domain includes the RXLR sequence itself and the downstream dEER sequence. The gray colors distinguish the regions of the effector proteins that are involved in secretion and targeting from those involved in effector activity (Modified from Morgan and Kamoun, 2007; Oh et al., 2010).

CNNSA3_2018_v45n4_561_f0002.png 이미지

Fig. 2. The 34-amino acid C-terminal region of AVRblb2 (Avrblb247-81) is sufficient for activation of Rpi-blb2–mediated hypersensitive cell death (HCD). Various AVRblb2-deletion constructs were co‐expressed with Rpi-blb2 by agro‐infiltration in Nicotiana benthamiana to determine the AVRblb2 domains required for the induction of the Rpi-blb2‐mediated HCD. A schematic view of the various deletion constructs is shown on the left. Symptoms of infiltration sites co‐expressing the AVRblb2 constructs with Rpi-blb2 are shown on the right (Modified from Oh et al., 2009). Photographs of symptoms were taken 5 days post-infiltration. SP, signal peptide.

References

  1. Adl SM, Simpson AG, Farmer MA, Andersen RA, Anderson OR, Barta JR, Bowser SS, Brugerolle G, Fensome RA, Fredericq S, James TY, Karpov S, Kugrens P, Krug J, Lane CE, Lewis LA, Lodge J, Lynn DH, Mann DG, McCourt RM, Mendoza L, Moestrup O, Mozley-Standridge SE, Nerad TA, Shearer CA, Smirnov AV, Spiegel FW, Taylor MF. 2005. The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. Journal of Eukaryotic Microbiology 525:399-451.
  2. Allen RL, Bittner-Eddy PD, Grenville-Briggs LJ, Meitz JC, Rehmany AP, Rose LE, Beynon JL. 2004. Host-parasite coevolutionary conflict between Arabidopsis and downy mildew. Science 306:1957-1960. https://doi.org/10.1126/science.1104022
  3. Anderson RG, Casady MS, Fee RA, Vaughan MM, Deb D, Fedkenheuer K, Huffaker A, Schmelz EA, Tyler BM, McDowell JM. 2012. Homologous RXLR effectors from Hyaloperonospora arabidopsidis and Phytophthora sojae suppress immunity in distantly related plants. The Plant Journal 72:882-893. https://doi.org/10.1111/j.1365-313X.2012.05079.x
  4. Armstrong MR, Whisson SC, Pritchard L, Bos JI, Venter E, Avrova AO, Rehmany AP, Bohme U, Brooks K, Cherevach I, Hamlin N, White B, Fraser A, Lord A, Quail MA, Churcher C, Hall N, Berriman M, Huang S, Kamoun S, Beynon JL, Birch PR. 2005. An ancestral oomycete locus contains late blight avirulence gene Avr3a, encoding a protein that is recognized in the host cytoplasm. Proceedings of the National Academy of Sciences of the USA 102:7766-7771. https://doi.org/10.1073/pnas.0500113102
  5. Bhattacharjee S, Hiller NL, Liolios K, Win J, Kanneganti TD, Young C, Kamoun S, Haldar K. 2006. The malarial host-targeting signal is conserved in the Irish potato famine pathogen. PLoS pathogens 2:e50. https://doi.org/10.1371/journal.ppat.0020050
  6. Birch PR, Rehmany AP, Pritchard L, Kamoun S, Beynon JL. 2006. Trafficking arms: Oomycete effectors enter host plant cells. Trends in Microbiology 14:8-11. https://doi.org/10.1016/j.tim.2005.11.007
  7. Boller T, He SY. 2009. Innate immunity in plants: An arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science 324:742-744. https://doi.org/10.1126/science.1171647
  8. Bos JI, Kanneganti TD, Young C, Cakir C, Huitema E, Win J, Armstrong MR, Birch PR, Kamoun S. 2006. The C-terminal half of Phytophthora infestans RXLR effector AVR3a is sufficient to trigger R3a-mediated hypersensitivity and suppress INF1-induced cell death in Nicotiana benthamiana. Plant Journal 48:165-176. https://doi.org/10.1111/j.1365-313X.2006.02866.x
  9. Boutemy LS, King SR, Win J, Hughes RK, Clarke TA, Blumenschein TM, Kamoun S, Banfield MJ. 2011. Structures of Phytophthora RXLR effector proteins: A conserved but adaptable fold underpins functional diversity. Journal of Biological Chemistry 286:35834-35842. https://doi.org/10.1074/jbc.M111.262303
  10. Bozkurt TO, Schornack S, Banfield MJ, Kamoun S. 2012. Oomycetes, effectors, and all that jazz. Current Opinion in Plant Biology 15:483-492. https://doi.org/10.1016/j.pbi.2012.03.008
  11. Chou S, Krasileva KV, Holton JM, Steinbrenner AD, Alber T, Staskawicz BJ. 2011. Hyaloperonospora arabidopsidis ATR1 effector is a repeat protein with distributed recognition surfaces. Proceedings of the National Academy of Sciences USA 108:13323-13328. https://doi.org/10.1073/pnas.1109791108
  12. Coll NS, Epple P, Dangl JL. 2011. Programmed cell death in the plant immune system. Cell Death and Differentiation 18:1247-1256. https://doi.org/10.1038/cdd.2011.37
  13. Cook DE, Mesarich CH, Thomma BP. 2015. Understanding plant immunity as a surveillance system to detect invasion. Annual Review of Phytopathology 53: 541-563. https://doi.org/10.1146/annurev-phyto-080614-120114
  14. Cui H, Tsuda K, Parker JE. 2015. Effector-triggered immunity: From pathogen perception to robust defense. Annual Review of Plant Biology 66:487-511. https://doi.org/10.1146/annurev-arplant-050213-040012
  15. de Meaux J, Mitchell-Olds T. 2003. Evolution of plant resistance at the molecular level: Ecological context of species interactions. Heredity 91:345-352. https://doi.org/10.1038/sj.hdy.6800342
  16. Dick M. 1969. Morphology and taxonomy of the oomycetes, with special reference to Saprolegniaceae, Leptomitaceae, and Pythiaceae. New Phytologist 68:751-775. https://doi.org/10.1111/j.1469-8137.1969.tb06478.x
  17. Dodds PN, Lawrence GJ, Catanzariti AM, Teh T, Wang CI, Ayliffe MA, Kobe B, Ellis JG. 2006. Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes. Proceedings of the National Academy of Sciences USA 103:8888-8893. https://doi.org/10.1073/pnas.0602577103
  18. Dodds PN, Rathjen JP. 2010. Plant immunity: Towards an integrated view of plant-pathogen interactions. Nature Reviews Genetics 11:539-548.
  19. Dou D, Kale SD, Liu T, Tang Q, Wang X, Arredondo FD, Basnayake S, Whisson S, Drenth A, Maclean D, Tyler BM. 2010. Different domains of Phytophthora sojae effector Avr4/6 are recognized by soybean resistance genes Rps4 and Rps6. Molecular Plant-Microbe Interactions 23:425-435. https://doi.org/10.1094/MPMI-23-4-0425
  20. Dou D, Kale SD, Wang X, Jiang RH, Bruce NA, Arredondo FD, Zhang X, Tyler BM. 2008. RXLR-mediated entry of Phytophthora sojae effector Avr1b into soybean cells does not require pathogen-encoded machinery. Plant Cell 20:1930-1947. https://doi.org/10.1105/tpc.107.056093
  21. Fellbrich G, Romanski A, Varet A, Blume B, Brunner F, Engelhardt S, Felix G, Kemmerling B, Krzymowska M, Nurnberger T. 2002. NPP1, a Phytophthora-associated trigger of plant defense in parsley and Arabidopsis. Plant Journal 32:375-390. https://doi.org/10.1046/j.1365-313X.2002.01454.x
  22. Fry WE, Goodwin SB. 1997. Resurgence of the Irish potato famine fungus. Bioscience 47:363-371. https://doi.org/10.2307/1313151
  23. Gilroy EM, Breen S, Whisson SC, Squires J, Hein I, Kaczmarek M, Turnbull D, Boevink PC, Lokossou A, Cano LM, Morales J, Avrova AO, Pritchard L, Randall E, Lees A, Govers F, van West P, Kamoun S, Vleeshouwers VG, Cooke DE, Birch PR. 2011. Presence/absence, differential expression and sequence polymorphisms between PiAVR2 and PiAVR2-like in Phytophthora infestans determine virulence on R2 plants. New Phytologist 191:763-776. https://doi.org/10.1111/j.1469-8137.2011.03736.x
  24. Goodwin SB, Cohen BA, Fry WE. 1994. Panglobal distribution of a single clonal lineage of the Irish potato famine fungus. Proceedings of the National Academy of Sciences USA. 91:11591-11595. https://doi.org/10.1073/pnas.91.24.11591
  25. Haas BJ, Kamoun S, Zody MC, Jiang RH, Handsaker RE, Cano LM, Grabherr M, Kodira CD, Raffaele S, Torto-Alalibo T, Bozkurt TO, Ah-Fong AM, Alvarado L, Anderson VL, Armstrong MR, Avrova A, Baxter L, Beynon J, Boevink PC, Bollmann SR, Bos JI, Bulone V, Cai G, Cakir C, Carrington JC, Chawner M, Conti L, Costanzo S, Ewan R, Fahlgren N, Fischbach MA, Fugelstad J, Gilroy EM, Gnerre S, Green PJ, Grenville-Briggs LJ, Griffith J, Grunwald NJ, Horn K, Horner NR, Hu CH, Huitema E, Jeong DH, Jones AM, Jones JD, Jones RW, Karlsson EK, Kunjeti SG, Lamour K, Liu Z, Ma L, Maclean D, Chibucos MC, McDonald H, McWalters J, Meijer HJ, Morgan W, Morris PF, Munro CA, O'Neill K, Ospina-Giraldo M, Pinzon A, Pritchard L, Ramsahoye B, Ren Q, Restrepo S, Roy S, Sadanandom A, Savidor A, Schornack S, Schwartz DC, Schumann UD, Schwessinger B, Seyer L, Sharpe T, Silvar C, Song J, Studholme DJ, Sykes S, Thines M, van de Vondervoort PJ, Phuntumart V, Wawra S, Weide R, Win J, Young C, Zhou S, Fry W, Meyers BC, van West P, Ristaino J, Govers F, Birch PR, Whisson SC, Judelson HS, Nusbaum C. 2009. Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature 461:393-398. https://doi.org/10.1038/nature08358
  26. Hogenhout SA, Van der Hoorn RA, Terauchi R, Kamoun S. 2009. Emerging concepts in effector biology of plant-associated organisms. Molecular Plant-Microbe Interactions 22:115-122. https://doi.org/10.1094/MPMI-22-2-0115
  27. Jiang RH, Tripathy S, Govers F, Tyler BM. 2008. RXLR effector reservoir in two Phytophthora species is dominated by a single rapidly evolving superfamily with more than 700 members. Proceedings of the National Academy of Sciences USA105:4874-4879. https://doi.org/10.1073/pnas.0709303105
  28. Jones JD, Dangl JL. 2006. The plant immune system. Nature 444:323-329. https://doi.org/10.1038/nature05286
  29. Kale SD, Tyler BM. 2011. Entry of oomycete and fungal effectors into plant and animal host cells. Cellular Microbiology 13:1839-1848. https://doi.org/10.1111/j.1462-5822.2011.01659.x
  30. Kamoun S. 2006. A catalogue of the effector secretome of plant pathogenic oomycetes. Annual Review of Phytopathology 44:41-60. https://doi.org/10.1146/annurev.phyto.44.070505.143436
  31. Kamoun S, Furzer O, Jones JD, Judelson HS, Ali GS, Dalio RJ, Roy SG, Schena L, Zambounis A, Panabieres F, Cahill D, Ruocco M, Figueiredo A, Chen X, Hulvey J, Stam R, Lamour K, Gijzen M, Tyler BM, Grunwald NJ, Mcdowell J, Daayf F, Fry WE, Lindqvist-kreuze H, Meijer HJ, Petre B, Ristaino J, Yoshida K, Birch PR, Govers F. 2015. The Top 10 oomycete pathogens in molecular plant pathology. Molecular Plant Pathology 16:413-434. https://doi.org/10.1111/mpp.12190
  32. Kamoun S, Goodwin SB. 2007. Fungal and oomycete genes galore. New Phytologist 174:713-717. https://doi.org/10.1111/j.1469-8137.2007.02085.x
  33. Kamoun S, Lindqvist H, Govers F. 1997. A novel class of elicitin-like genes from Phytophthora infestans. Molecular Plant-Microbe Interactions 10:1028-1030. https://doi.org/10.1094/MPMI.1997.10.8.1028
  34. Kjemtrup S, Nimchuk Z, Dangl JL. 2000. Effector proteins of phytopathogenic bacteria: Bifunctional signals in virulence and host recognition. Current Opinion in Microbiology 31:73-78.
  35. Leonelli L, Pelton J, Schoeffler A, Dahlbeck D, Berger J, Wemmer DE, Staskawicz B. 2011. Structural elucidation and functional characterization of the Hyaloperonospora arabidopsidis effector protein ATR13. PLoS Pathogens 7:e1002428. https://doi.org/10.1371/journal.ppat.1002428
  36. Liu Z, Bos JI, Armstrong M, Whisson SC, da Cunha L, Torto-Alalibo T, Win J, Avrova AO, Wright F, Birch PR, Kamoun S. 2005. Patterns of diversifying selection in the phytotoxin-like scr74 gene family of Phytophthora infestans. Molecular Biology and Evolution 22:659-672. https://doi.org/10.1093/molbev/msi049
  37. Lu S, Chen L, Tao K, Sun N, Wu Y, Lu X, Wang Y, Dou D. 2013. Intracellular and extracellular phosphatidylinositol 3-phosphate produced by Phytophthora species is important for infection. Molecular Plant 6:1592-1604. https://doi.org/10.1093/mp/sst047
  38. Mateos FV, Rickauer M, Esquerre-Tugaye MT. 1997. Cloning and characterization of a cDNA encoding an elicitor of Phytophthora parasitica var. nicotianae that shows cellulose-binding and lectin-like activities. Molecular Plant-Microbe Interactions 10:1045-1053. https://doi.org/10.1094/MPMI.1997.10.9.1045
  39. Morgan W, Kamoun S. 2007. RXLR effectors of plant pathogenic oomycetes. Current Opinion in Microbiology 10:332-338. https://doi.org/10.1016/j.mib.2007.04.005
  40. Nomura K, Mecey C, Lee YN, Imboden LA, Chang JH, He SY. 2011. Effector-triggered immunity blocks pathogen degradation of an immunity-associated vesicle traffic regulator in Arabidopsis. Proceedings of the National Academy of Sciences USA 108:10774-10779. https://doi.org/10.1073/pnas.1103338108
  41. Oh SK, Kamoun S, Choi D. 2010. Oomycetes RXLR effectors function as both activator and suppressor of plant immunity. Plant Pathology Journal 26:435-435.
  42. Oh SK, Young C, Lee M, Oliva R, Bozkurt TO, Cano LM, Win J, Bos JI, Liu HY, van Damme M, Morgan W, Choi D, Van der Vossen EA, Vleeshouwers VG, Kamoun S. 2009. In planta expression screens of Phytophthora infestans RXLR effectors reveal diverse phenotypes, including activation of the Solanum bulbocastanum disease resistance protein Rpi-blb2. Plant Cell 21:2928-2947. https://doi.org/10.1105/tpc.109.068247
  43. Orsomando G, Lorenzi M, Raffaelli N, Dalla Rizza M, Mezzetti B, Ruggieri S. 2001. Phytotoxic protein PcF: Purification, characterization, and cDNA sequencing of a novel hydroxyproline-containing factor secreted by the strawberry pathogen Phytophthora cactorum. Journal of Biological Chemistry. 276:21578-21584 https://doi.org/10.1074/jbc.M101377200
  44. Petre B, Kamoun S. 2014. How do filamentous pathogens deliver effector proteins into plant cells? PLoS biology 12:e1001801. https://doi.org/10.1371/journal.pbio.1001801
  45. Plett JM, Kemppainen M, Kale SD, Kohler A, Legue V, Brun A, Tyler BM, Pardo AG, Martin F. 2011. A secreted effector protein of Laccaria bicolor is required for symbiosis development. Current Biology 21:1197-1203. https://doi.org/10.1016/j.cub.2011.05.033
  46. Qutob D, Kamoun S, Gijzen M. 2002. Expression of a Phytophthora sojae necrosis-inducing protein occurs during transition from biotrophy to necrotrophy. Plant Journal 32:361-373. https://doi.org/10.1046/j.1365-313X.2002.01439.x
  47. Rehmany AP, Gordon A, Rose LE, Allen RL, Armstrong MR, Whisson SC, Kamoun S, Tyler BM, Birch PR, Beynon JL. 2005. Differential recognition of highly divergent downy mildew avirulence gene alleles by RPP1 resistance genes from two Arabidopsis lines. Plant Cell 17:1839-1850. https://doi.org/10.1105/tpc.105.031807
  48. Rose JK, Ham KS, Darvill AG, Albersheim P. 2002. Molecular cloning and characterization of glucanase inhibitor proteins: Coevolution of a counterdefense mechanism by plant pathogens. Plant Cell 14:1329-1345. https://doi.org/10.1105/tpc.002253
  49. Sejalon-Delmas N, Mateos FV, Bottin A, Rickauer M, Dargent R, Esquerre-Tugaye MT. 1997. Purification, elicitor activity, and cell wall localization of a glycoprotein from Phytophthora parasitica var. nicotianae, a fungal pathogen of tobacco. Phytopathology 87:899-909. https://doi.org/10.1094/PHYTO.1997.87.9.899
  50. Sacks W, Nurnberger T, Hahlbrock K, Scheel D. 1995. Molecular characterization of nucleotide sequences encoding the extracellular glycoprotein elicitor from Phytophthora megasperma. Molecular and General Genetics 246:45-55. https://doi.org/10.1007/BF00290132
  51. Saunders DG, Win J, Cano LM, Szabo LJ, Kamoun S, Raffaele S. 2012. Using hierarchical clustering of secreted protein families to classify and rank candidate effectors of rust fungi. PLoS One 7:e29847. https://doi.org/10.1371/journal.pone.0029847
  52. Schornack S, van Damme M, Bozkurt TO, Cano LM, Smoker M, Thines M, Gaulin E, Kamoun S, Huitema E. 2013. Ancient class of translocated oomycete effectors targets the host nucleus. Proceedings of the National Academy of Sciences USA 107:17421-17426.
  53. Scott MS, Boisvert FM, McDowall MD, Lamond AI, Barton GJ. 2010. Characterization and prediction of protein nucleolar localization sequences. Nucleic Acids Research 38:7388-7399. https://doi.org/10.1093/nar/gkq653
  54. Shan W, Cao M, Leung D, Tyler BM. 2004. The Avr1b locus of Phytophthora sojae encodes an elicitor and a regulator required for avirulence on soybean plants carrying resistance gene Rps1b. Molecular Plant-Microbe Interactions 17:394-403. https://doi.org/10.1094/MPMI.2004.17.4.394
  55. Stahl EA, Bishop JG. 2000. Plant-pathogen arms races at the molecular level. Current Opinion in Plant Biology 3:299-304. https://doi.org/10.1016/S1369-5266(00)00083-2
  56. Stassen JH, Van den Ackerveken G. 2011. How do oomycete effectors interfere with plant life? Current Opinion in Plant Biology 14:407-414. https://doi.org/10.1016/j.pbi.2011.05.002
  57. Sun F, Kale SD, Azurmendi HF, Li D, Tyler BM, Capelluto DG. 2013. Structural basis for interactions of the Phytophthora sojae RxLR effector Avh5 with phosphatidylinositol 3-phosphate and for host cell entry. Molecular Plant-Microbe Interactions 26:330-344. https://doi.org/10.1094/MPMI-07-12-0184-R
  58. Teh OK, Hofius D. 2014. Membrane trafficking and autophagy in pathogen-triggered cell death and immunity. Journal of Experimental Botany 65:1297-1312. https://doi.org/10.1093/jxb/ert441
  59. Tian M, Win J, Savory E, Burkhardt A, Held M, Brandizzi F, Day B. 2011. 454 Genome sequencing of Pseudoperonospora cubensis reveals effector proteins with a QXLR translocation motif. Molecular Plant-Microbe Interactions 24:543-553. https://doi.org/10.1094/MPMI-08-10-0185
  60. Torto TA, Li S, Styer A, Huitema E, Testa A, Gow NA, van West P, Kamoun S. 2003. EST mining and functional expression assays identify extracellular effector proteins from the plant pathogen Phytophthora. Genome Research 13:1675-1685. https://doi.org/10.1101/gr.910003
  61. Tsuda K, Katagiri F. 2010. Comparing signaling mechanisms engaged in pattern-triggered and effector-triggered immunity. Current Opinion in Plant Biology 13:459-465. https://doi.org/10.1016/j.pbi.2010.04.006
  62. Tsuda K, Sato M, Stoddard T, Glazebrook J, Katagiri F. 2009. Network properties of robust immunity in plants. PLoS Genetics 5:e1000772. https://doi.org/10.1371/journal.pgen.1000772
  63. Tyler BM. 2007. Phytophthora sojae: Root rot pathogen of soybean and model oomycete. Molecular Plant Pathology 8:1-8. https://doi.org/10.1111/j.1364-3703.2006.00373.x
  64. Tyler BM, Kale SD, Wang Q, Tao K, Clark HR, Drews K, Antignani V, Rumore A, Hayes T, Plett JM, Fudal I, Gu B, Chen Q, Affeldt KJ, Berthier E, Fischer GJ, Dou D, Shan W, Keller NP, Martin F, Rouxel T, Lawrence CB. 2013. Microbe-independent entry of oomycete RxLR effectors and fungal RxLR-like effectors into plant and animal cells is specific and reproducible. Molecular Plant-Microbe Interactions 26:611-616. https://doi.org/10.1094/MPMI-02-13-0051-IA
  65. van Damme M, Bozkurt TO, Cakir C, Schornack S, Sklenar J, Jones AM, Kamoun S. 2012. The Irish potato famine pathogen Phytophthora infestans translocates the CRN8 kinase into host plant cells. PLoS Pathogens 8:e1002875. https://doi.org/10.1371/journal.ppat.1002875
  66. van der Biezen EA, Jones JDG. 1998. Plant disease-resistance proteins and the gene-for-gene concept. Trends in Biochemical Sciences 23:454-456. https://doi.org/10.1016/S0968-0004(98)01311-5
  67. van der Hoorn RA, Kamoun S. 2008. From guard to decoy: A new model for perception of plant pathogen effectors. Plant Cell 20:2009-2017. https://doi.org/10.1105/tpc.108.060194
  68. Veit S, Worle JM, Nurnberger T, Koch W, Seitz HU. 2001. A novel protein elicitor (PaNie) from Pythium aphanidermatum induces multiple defense responses in carrot, Arabidopsis, and tobacco. Plant Physiology 127:832-841. https://doi.org/10.1104/pp.010350
  69. Vleeshouwers VG, Rietman H, Krenek P, Champouret N, Young C, Oh SK, Wang M, Bouwmeester K, Vosman B, Visser RG, Jacobsen E, Govers F, Kamoun S, Van der Vossen EA. 2008. Effector genomics accelerates discovery and functional profiling of potato disease resistance and Phytophthora infestans avirulence genes. PLoS One 3:e2875. https://doi.org/10.1371/journal.pone.0002875
  70. Wawra S, Trusch F, Matena A, Apostolakis K, Linne U, Zhukov I, Stanek J, Kozminski W, Davidson I, Secombes CJ, Bayer P, van West P. 2017. The RxLR motif of the host targeting effector AVR3a of Phytophthora infestans is cleaved before secretion. Plant Cell. 29:1184-1195.
  71. Whisson SC, Boevink PC, Moleleki L, Avrova AO, Morales JG, Gilroy EM, Armstrong MR, Grouffaud S, van West P, Chapman S, Hein I, Toth IK, Pritchard L, Birch PR. 2007. A translocation signal for delivery of oomycete effector proteins into host plant cells. Nature 450:115-118. https://doi.org/10.1038/nature06203
  72. Win J, Krasileva KV, Kamoun S, Shirasu K, Staskawicz BJ, Banfield MJ. 2012. Sequence divergent RXLR effectors share a structural fold conserved across plant pathogenic oomycete species. PLoS Pathogen 8:e1002400. https://doi.org/10.1371/journal.ppat.1002400
  73. Win J, Morgan W, Bos J, Krasileva KV, Cano LM, Chaparro-Garcia A, Ammar R, Staskawicz BJ, Kamoun S. 2007. Adaptive evolution has targeted the C-terminal domain of the RXLR effectors of plant pathogenic oomycetes. Plant Cell 19:2349-2369. https://doi.org/10.1105/tpc.107.051037
  74. Yaeno T, Li H, Chaparro-Garcia A, Schornack S, Koshiba S, Watanabe S, Kigawa T, Kamoun S, Shirasu K. 2011. Phosphatidylinositol monophosphate-binding interface in the oomycete RXLR effector AVR3a is required for its stability in host cells to modulate plant immunity. Proceedings of the National Academy of Sciences USA 108:14682-14687. https://doi.org/10.1073/pnas.1106002108
  75. Yaeno T, Shirasu K. 2013. The RXLR motif of oomycete effectors is not a sufficient element for binding to phosphatidylinositol monophosphates. Plant Signaling & Behavior 8: e23865. https://doi.org/10.4161/psb.23865
  76. Zeng W, He SY. 2010. A prominent role of the flagellin receptor FLS2 in mediating stomatal response to Pseudomonas syringae pv. tomato DC3000 in Arabidopsis. Plant Physiology 153:1188-1198. https://doi.org/10.1104/pp.110.157016
  77. Zhang J, Shao F, Li Y, Cui H, Chen L, Li H, Zou Y, Long C, Lan L, Chai J, Chen S, Tang X, Zhou JM. 2007. A Pseudomonas syringae effector inactivates MAPKs to suppress PAMP-induced immunity in plants. Cell Host & Microbe 1:175-185. https://doi.org/10.1016/j.chom.2007.03.006
  78. Zipfel C. 2014. Plant pattern-recognition receptors. Trends in Immunology 35:345-351. https://doi.org/10.1016/j.it.2014.05.004