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Retrieving temporal information of encoded events is one of the core control processes in episodic memory. Despite 

much prior neuroimaging research on episodic retrieval, little is known about how large-scale connectivity patterns are 

involved in the retrieval of sequentially organized episodes. Task-related functional connectivity multivariate pattern 

analysis was used to distinguish the different sequential retrieval. In this study, participants performed temporal episodic 

memory tasks in which they were required to retrieve the encoded items in either the forward or backward direction. 

While separately parsed local networks did not yield substantial efficiency in classification performance, the large-scale 

patterns of interactivity across the cortical and sub-cortical brain regions implicated in both the cognitive control of 

memory and goal-directed cognitive processes encompassing lateral and medial prefrontal regions, inferior parietal 

lobules, middle temporal gyrus, and caudate yielded high discriminative power in classification of temporal retrieval 

processes. These findings demonstrate that mnemonic control processes across cortical and subcortical regions are 

recruited to re-experience temporally-linked series of memoranda in episodic memory and are mirrored in the 

qualitatively distinct global network patterns of functional connectivity.
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Introduction

Episodic memory encompasses vast amounts of information including time, place, and self-referential 

content, and the memories are tagged to each event allowing the retrieval of past events (Tulving, 

2002). Of particular importance is the ability to mentally go back and forth in time and 

re-experience sequentially organized memory events being the key controlled processes in human 

cognition (Tulving, 1972, 1983). Although it has long been suggested that complex mechanisms, such 

as executive function, planning, and visuospatial processing, play important roles in sequential temporal 

memory processes (Lezak, 1995; Schofield & Ashman, 1986), how the brain networks are involved is 

yet to be investigated.

Prior behavioral and clinical research has utilized the sequential retrieval manipulation to assess 

response time and performance accuracy as indicators of cognitive control ability (Anders & Lillyquist, 

1971; Drosopoulos, Windau, Wagner, & Born, 2007; Kahana & Caplan, 2002; Thomas, Milner, & 

Haberlandt, 2003). While participants can retrieve a relevant memory target that follows the 

presented cue item by using the directional flow or causality of encoding contexts (forward), the 

reverse may require participants to cognitively travel back from the cue item and search for the 

target in their long-term memory. Under such circumstances, goal-relevant targets cannot be 

automatically driven simply by encoding cues; thus, top-down processing such as controlled retrieval is 

essential for backward retrieval. For this matter, temporal memory task, especially sequential processing 

in reverse order of memoranda, has been frequently examined in several neuropsychological tests (i.e., 

Digit Span Backward from the Wechsler Adult Intelligence Scale; Wechsler, 2008) and the task has 

also been investigated as one of the most clinically important cognitive domains in various groups 

such as Alzheimer’s dementia (Storandt, Kaskie, & Von Dras, 1998), Parkinson’s disease cognitive 

impairment (Sagar, Sullivan, Gabrieli, Corkin, & Growdon, 1988; Vriezen & Moscovitch, 1990), 

preclinical Huntington’s disease (Pirogovsky, et al., 2009), amnesic patients (Bowers, Verfaellie, 

Valenstein, & Heilman, 1988), patients with selective hippocampal lesions (Mayes et al., 2001) as well 

as in the normal elderly participants (Fabiani & Friedman, 1997; Parkin, Walter, & Hunkin, 1995).

These laboratory and neuropsychological behavioral studies have shown the presence of 

backward-retrieval detriment or forward-retrieval advantage mediated by the differential controlled 

process involved in the different directions of sequential retrieval (Anders & Lillyquist, 1971; 

Drosopoulos, Windau, Wagner, & Born, 2007; Thomas, Milner, & Haberlandt, 2003). However, the 
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underlying neural patterns of the brain involved in the sequential retrieval processes and how the 

controlled process is differentially recruited in these two directions are yet to be fully discussed. Given 

the various cognitive processes involved, we assumed that controlled retrieval of sequentially encoded 

events would be achieved by global brain networks and its interactivity among control network 

regions. However, little research has reported the differential neural network patterns, especially 

regarding how interactivity within large-scale brain network is recruited for retrieval of temporally 

organized events.

Previous univariate functional magnetic resonance imaging (fMRI) analyses (e.g., statistical parametric 

mapping) of blood oxygen level-dependent (BOLD) activity have demonstrated that the left 

ventrolateral prefrontal cortex (VLPFC), specifically the anterior part (aVLPFC; Brodmann area (BA) 

47, the pars orbitalis subarea of the inferior frontal gyrus), play a crucial role in cognitively controlled 

retrieval processes (see Badre & Wagner, 2007 for a review), such as controlled retrieval of semantic 

memories (Badre, Poldrack, Pare-Blagoev, Insler, & Wagner, 2005; Han, O'Connor, Eslick, & 

Dobbins, 2012; Wagner, Pare-Blagoev, Clark, & Poldrack, 2001) and retrieval of contextual 

information (Dobbins & Han, 2006; Raposo, Han, & Dobbins, 2009). These findings shed lights on 

the understanding of neural substrates for controlled retrieval; however, the localizing brain activity 

typically relies on the mass-univariate methods (i.e., statistical parametric mapping) based on the 

assumption that different brain regions function in independent (voxel-level) manners.

Recently, there is increasing evidence that the left aVLPFC functionally couples with several cortical 

as well as sub-cortical brain regions. For example, Neubert, Mars, Thomas, Sallet, and Rushworth 

(2014) observed that during the resting-state period, aVLPFC (BA 47) is connected with several brain 

regions, including other prefrontal sub-areas, the temporal, parietal, and premotor cortices. Similarly, 

Han, et al. (2012) also found that the left VLPFC is intrinsically connected with both cortical and 

subcortical areas, including the bilateral PFC, middle temporal gyrus, parietal, and caudate regions. 

Recently, functional connectivity findings from task-based fMRI study has also shown similar functional 

coupling patterns in intrinsically defined networks, such as the inferior parietal, temporal, and striatal 

regions (Barredo, Oztekin, & Badre, 2015). The results also demonstrated that the left aVLPFC was 

functionally connected with other large-scale brain networks, such as the frontoparietal control network 

(Spreng, Stevens, Chamberlain, Gilmore, & Schacter, 2010; Vincent, Kahn, Snyder, Raichle, & 

Buckner, 2008), which has been suggested to play a crucial role in the cognitive control processes 

(Badre & D'Esposito, 2007; Cabeza, Ciaramelli, Olson, & Moscovitch, 2008; Corbetta, Patel, & 
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Shulman, 2008; Koechlin, Basso, Pietrini, Panzer, & Grafman, 1999). Taken together, these 

connectionism approaches provide a basis for identifying the potentially relevant nodes and raise the 

possibility that interregional and integrative functional connectivity multivariate patterns across 

distributed cortical and sub-cortical regions are involved in the sequential retrieval of temporally 

organized events.

The purpose of this study was two-fold. First, we aimed to assess whether multivariate patterns of 

brain connectivity were distinguishably employed for the retrieval processes of sequentially organized 

events either in the forward or backward direction. We used a machine learning algorithm (Cortes & 

Vapnik, 1995; Vapnik, 1999) and the novel approach adopted in the current study was that we 

applied a task-based functional connectivity multivariate pattern analysis (fcMVPA) approach with 

task-related time-series extracted in a voxel-wise manner from the whole brain. If sequential retrieval 

in different directions would demand differential controlled processes based on distinctive networks, the 

task-based functional connectivity patterns obtained from the sequential retrieval period can be used to 

discriminate the forward and backward retrieval processes. To identify the most optimally distinctive 

network patterns, we also employed iterative search methods for classification as a function of the 

number of input features included (Pantazatos, Talati, Pavlidis, & Hirsch, 2012a, 2012b; Pantazatos, 

Talati, Schneier, & Hirsch, 2014).

Next, the current experiment also specifically aimed to collectively elucidate the whole-brain pattern 

characteristics of networks and to address how these are related to the regions previously implicated 

in controlled retrieval regions. We compared the achieved pattern classification performance across 

separately parsed networks to reveal whether our discriminating features (i.e., connectivity pattern) 

encompass the whole brain or are only restricted to within local networks (i.e., lateral prefrontal, 

parietal, temporal, striatal, fronto-parietal, fronto-temporal, fronto-striatal regions). Identification of 

distinctive whole-brain connectivity features would provide more thorough insights into how the 

mnemonic control processes to re-experience temporally-linked series of memoranda in episodic memory 

is represented in the brain.
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Materials and Methods

Participants

Twenty-two healthy volunteers (8 females; mean age = 23.23, SD = 2.39) participated in the 

experiment and were paid for their time (10,000 South Korean Won/hour). Two participants were 

excluded from all analyses because of incompletion due to fatigue, and the analysis for the N-back 

task was conducted with data from only 19 participants because data for one participant were 

unavailable. All participants had normal or corrected-to-normal vision and were right-handed. Informed 

consent was obtained in a manner approved by the Institutional Review Board of Yonsei University. 

Prior to the experiment, participants were screened for any significant medical conditions, including 

their history of neurological or psychiatric diagnoses.

Experimental Materials and Procedures

The current fMRI study included a simplified temporal episodic memory task and one working 

memory task (N-back) (Fig. 1). Prior to the actual task runs, resting-state data were collected to 

discover intrinsic functional connectivity. During resting-state data acquisition, participants were 

instructed to close their eyes while lying awake and to not think of anything in particular or in a 

systematic way. After resting-state data collection, the actual experimental runs began. The temporal 

episodic memory task consisted of an encoding and a retrieval runs. The experimental items of the 

episodic memory task were composed of 90 and 160 common Korean nouns (2 syllable words with 2 

Korean letters long). All word items were projected onto a screen with a black background and 

viewed using a mirror mounted on the head coil. Before starting the actual fMRI scanning experiment 

runs, participants completed a practice run outside of the scanner using a laptop computer. Both the 

practice and experimental trials were programmed using the Cogent 2000 toolbox 

(www.vislab.ucl.ac.uk/cogent.php) and MATLAB 7.12.0 (The MathWorks, Natick, MA).

During the encoding run of temporal memory task, participants were asked to memorize triplets of 

words (e.g., A–B–C) and each word was presented sequentially for 2 s at the center of the screen. 

Each trial was followed by an association period for another 8 s, during which the participants were 

required to mentally make associations with the word triplet in sequence. The encoding run included 
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30 trials (triplets) for a total of 90 words. In the retrieval run, directional instruction (i.e., forward or 

backward) for each trial was shown for 2 s, then either the first or last word of a triplet (A or C) 

learned in the encoding run was presented as a cue for 2 s. During the next 8 s, participants were 

required to rehearse the other two words in sequential order (forward retrieval; A–B–C) or in the 

backward direction (backward retrieval; C–B–A). Finally, participants had another 4 s to choose the 

correct answer from two options (in forward retrieval, B–C versus C–B; in backward retrieval, A–B 

versus B–A), and the order of the two options was randomized. The retrieval run consisted of 30 

trials of alternating mini-blocks of the forward and backward conditions, and each mini-block included 

five trials.

After completing the temporal memory task, participants performed a working memory task, 

N-back, during which they were successively presented with a series of single-alphabet letters. The 

working memory task is employed to ensure that the expected sequential memory activation does not 

merely result from the working memory load difference but rather from the demand required for 

(Figure 1) Schematic figure of the experimental paradigm and stimuli examples. (A) A

series of word triplets were successively presented during the encoding run. The retrieval

run consisted of two different conditions. Participants were required to retrieve the other

two words in sequential order in the forward or backward direction. (B) The N-back

working memory task consisted of three different conditions (i.e., 0-back, 1-back, and

2-back) in a block design, followed by a mini-resting block
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controlled retrieval processes. The N-back task included a total of three conditions (0-back, 1-back, 

and 2-back) in a block design. In the 0-back condition, the target was the letter “Z” and 

participants pressed a button as quickly as possible whenever the letter on the screen matched the 

target. In the 1-back and 2-back conditions, participants responded if the letter on the screen was 

identical to the stimulus presented one trial or two trials earlier, respectively. Each condition block 

consisted of 19 trials and there were four target trials in a block. One cycle was composed of three 

condition blocks and one mini-resting block, and each cycle was repeated three times in the same 

order.

fMRI Data Acquisition

Neuroimaging data were acquired with the 3T General Electric Healthcare Discovery MR750 

(Waukesha, WI) using an 8-channel radiofrequency head coil. Functional data were obtained with a 

T2*-weighted gradient-echo echoplanar imaging sequence (TR = 2000 ms, TE = 30 ms, 3.75 × 

3.75 × 4.0 mm3 in-plane resolution, 33 axial slices tilted 30° from the AC–PC plane to reduce the 

influence of in-plane susceptibility gradients (Deichmann, Gottfried, Hutton, & Turner, 2003), no gap, 

and interleaved collection). The first five volumes of each run were discarded prior to the actual data 

collection to ensure magnetization equilibrium. For the temporal memory task, 210 and 270 volumes 

were collected for the encoding and retrieval runs, respectively. In addition, 260 volumes were 

collected for the N-back run. Resting-state MRI data were collected prior to the experimental runs 

(204 volumes). Participants responded with a magnet-compatible button box placed under the right 

hand. At the end of the functional imaging runs, 3-dimensional T1-weighted structural images (TR = 

8.28 ms, TE = 3.29 ms, FOV = 198 × 220 mm2, voxel size = 0.77 × 0.86 × 1.0 mm3, 216 

sagittal slices, flip angle = 12°, and no gap) were acquired for visualization.

Functional Data Preprocessing and Analyses

Preprocessing and general linear model (GLM) analyses were conducted using SPM8 (Wellcome 

Department of Cognitive Neurology, London, U.K.) that includes for all task-evoked responses and a 

nuisance covariate, the run effect regressor. A slice-timing correction was accomplished by resampling 

all slices relative to the middle slice. Functional images were then realigned to the first volume for 
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motion correction, spatially normalized to the Montreal Neurological Institute (MNI) template provided 

with SPM8, then resampled into 3 × 3 × 3 mm3 size voxels, followed by spatial smoothing using a 

Gaussian kernel with a full width at a half maximum of 8 mm. We focused on the retrieval runs 

since we were investigating the differences in neural processes between the forward and backward 

retrieval directions.

All volumes of each run were treated as temporally correlated time-series and modeled by 

convolving a canonical hemodynamic response function (HRF) and its temporal derivative (except there 

was no temporal derivative for N-back due to the block design). The resulting hemodynamic functions 

were used as covariates in GLM, along with a covariate for the run effect. A high-pass filter (cut off 

128 s) was applied to remove low-frequency trends, and an autoregressive AR(1) model + white noise 

correction was used to estimate and correct for non-sphericity of the error covariance (Friston, et al., 

2002). The least-square parameter estimates of the best-fitting synthetic HRF for each condition of 

interest were used in pair-wise contrasts and stored as separate images for each participant; these were 

then checked against the null hypothesis with one-tailed t-tests to determine whether effects of 

participants were random at the group level. Given that the primary aim of the current study is to 

conduct fcMVPA, GLM analyses adopted less stringent uncorrected threshold to explore sufficient 

number of potential node regions. Clusters consisting of five or more contiguous voxels (3 mm 

isotropic) with p < .001 were chosen to be considered significant.

Resting-State Data Preprocessing and Analysis

Resting-state data were preprocessed using a Data Processing Assistant for Resting-State fMRI (Yan 

& Zang, 2010) which was developed based on SPM8 and the Resting-State fMRI Data Analysis 

Toolkit (Song, et al., 2011). For slice-timing correction, realignment, normalization, and smoothing 

processes of resting-state data, we followed the same protocols as those used for preprocessing of 

functional data described above. Subsequently, data were detrended and temporally filtered with a 

low-pass band filter (0.01–0.08 Hz). Furthermore, nuisance covariates including six head motion 

parameters, global mean signal, white matter signal, and cerebrospinal fluid signal were regressed out 

to improve the validity of our findings. Seed-to-voxel connectivity maps were generated for each 

participant and then were entered into the group level analysis. Participants were treated as a random 

effect to generate node maps to further investigate task-relate functional connectivity multivariate 
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pattern analyses.

Functional Connectivity Multivariate Pattern Analysis

Given that pattern analysis is more sensitive to extract subtle differences from distributed 

multi-dimensional functional effect than is GLM, we employed multivariate pattern analysis approach 

based on the machine learning algorithm. The novel approach adopted in our methods was that we 

extracted neural time-series across the whole retrieval runs and then convolved them with 

psychological factors (i.e., two different retrieval directions) to generate condition-weighted time-series 

in a voxel-by-voxel manner and take the cross-correlation between all voxels into account. This 

multivariate approach also has advantages in that the researchers do not need to pre-define ROIs (i.e., 

seed regions in Psycho-physiological Interaction (PPI)); thus, findings are not restricted to represent 

bivariate (seed-to-voxels) relations, and also in that it allows us to examine a simultaneous large-scale 

brain network changes rather than local alternations.

Task-Related Time-Series Extraction and Node Definitions for Connectivity Analysis

To obtain task-related time-series reflecting psychological factors, BOLD signal time-series were 

extracted from the whole brain in a voxel-wise manner for all retrieval runs using in-house scripts in 

MATLAB. The extracted BOLD signal time-series were then deconvolved with a parametric empirical 

Bayesian formulation implemented in SPM to estimate voxel-by-voxel neural time-series, and these 

were detrended to remove any linear and nonlinear trends. Condition-specific psychological factors were 

defined by contrasting the onset time points of each retrieval condition against baseline (i.e., 1 for 

forward retrieval conditions and 0 for others during forward retrievals or 1 for backward retrieval 

conditions and 0 for others during backward retrievals). Next, condition-weighted time-series were 

generated separately for the two retrieval directions by multiplying the aforementioned neural 

time-series with psychological factors. Since the condition-weighted time-series obtained here were based 

on neuronal activity, the time-series were convolved again with a canonical HRF to generate signals 

that were more closely related to BOLD signals measured with MRI. Finally, HRF-convolved 

time-series were detrended.

In order to avoid any biases resulting from the node selection based on task-activated patterns such 

as GLM findings, the nodes for additional functional connectivity analyses were defined based on the 
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results of the intrinsic resting-state analysis. The seed for resting-state connectivity analysis was defined 

within the aVLPFC region exclusively implicated in the temporal retrieval rather than working 

memory process in our data (see Results section 3.2.1). The time series of seed region was extracted 

and was correlated with the time courses of all other voxels using the Pearson cross-correlation. The 

intrinsic connectivity map obtained from the resting-state analysis generated 42 peak regions based on 

SPM-identified whole sub-peak local maxima. Any voxels outside of the gray matter were excluded, 

which resulted in a total of 31 peak voxels (see Section 3.2.2). We then created cube-shaped nodes 

of 27 voxels (3 × 3 × 3) centered on each peak voxel. To obtain a representative time-series for 

each node, the first eigenvariate time-series was extracted from whole voxels of the node using the 

principal component analysis (PCA) function embedded in MATLAB. This generated a total of 62 

task-related time-series (31 for forward and 31 for backward retrieval types) for each participant.

Iterative Multivariate Pattern Analysis

For each participant, pair-wise cross-correlation coefficients (Pearson correlation coefficient) between 

the time-series of whole nodes were calculated, which generated 31 × 31 symmetrical connectivity 

matrices. Since the resulting matrices were symmetric with respect to the diagonal, only 465 elements 

from the lower half of the matrix (i.e., 31 × 30/2) were used as features for further connectivity 

analyses. For feature selection, t-tests using correlation coefficients from two retrieval directions were 

performed for each feature comparing the differences between the means of the two conditions. Then, 

465 features were ranked based on the absolute t-score values to eliminate any directional bias, and 

z-score transformation was applied to each feature (r) to improve normality.

To test whether patterns of functional connectivity from each retrieval direction could 

discriminate between different directions of retrieval processes, we conducted fcMVPA using a 

linear support vector machine (SVM) algorithm embedded in the Spider v1.71 MATLAB toolbox 

(http://people.kyb.tuebingen.mpg.de/spider/). For SVM classification, 465 elements were used as input 

features, and data were labeled with two different class labels for training to identify the original 

retrieval direction membership (i.e., 1 and -1 for forward and backward, respectively). Classification 

accuracies were obtained in succession as a function of a range of included features, which were 

arranged in descending order by their absolute t-score value. Specifically, the Nth SVM classification 

accuracy was obtained using the top N features, for which the t-score values were arranged from the 

highest to Nth. Then, the (N+1)th accuracy was calculated by adding an additional feature that had 
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the next highest t-score value to the feature that was already included. This process was iterated until 

the classification used all features, from the top feature to the last feature with the lowest t-score 

value. Therefore, this method resulted in a total of 465 accuracy measures. The purpose of this 

approach was not to find the algorithm that maximized the prediction accuracy. Instead, it was 

designed to explore which features were potentially informative in classifying different retrieval types. 

Furthermore, we investigated the optimal number of features needed for machine learning processes 

since simply including complete data features for SVM classification may result in noisy information 

being used to train and test the classifier.

Each SVM classification performance was estimated using a leave-one-subject-out cross validation 

procedure. For each iteration of the validation, one subject (one sample from the forward and another 

sample from the backward types) was removed and the remaining 19 subjects (thus 19 forward and 

19 backward types) were put into the machine learning algorithm to train the classifier. The excluded 

two samples from one subject were then used to test the performance of the classifier: if the classifier 

predicted the class label of each test sample correctly, accuracy was scored as “1,” whereas if an 

incorrect prediction was made, it was scored as “0.” Therefore, there were 40 accuracies estimated 

from 20 rounds of iterations, which were then averaged to obtain one representative accuracy measure 

for the Nth SVM classification. To verify that the fcMVPA accuracies were valid, we also calculated 

the null distribution of 1000 permutations. For each permutation testing iteration, the original class 

labels were randomly shuffled and used for the SVM classification. The classification procedures 

occurred as conducted with the original data. If the connectivity patterns for the two retrieval 

directions were truly different and if each type had distinctive combinations of connectivity, randomly 

shuffled class labels for SVM classification should result in an accuracy of approximately 50%, whereas 

classification based on the original class labels should yield accuracy above chance.

Results

Behavioral Data

Accuracy (%)

Participants had better accuracy in the forward condition compared to that in the backward 
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condition (72% versus 62%, respectively; t(19) = 2.36, p = .029). There were no significant 

differences in accuracy between load conditions on the N-back task (0-back, M = 96.49, SD = 1.95; 

1-back, M = 99.12, SD = 0.60; 2-back, M = 93.86, SD = 2.46), with the exception of marginal 

differences between 1-back and 2-back conditions (t(18) = 1.99, p = .062).

Response Time (ms)

The mean response times (RTs) in the backward condition were significantly slower than those in 

the forward condition (2102 ms versus 2458 ms, t(19) = -4.46, p < .001). Overall RTs in the 

N-back task averaged 472 ms. The 2-back condition had the slowest RTs, whereas the 1-back 

condition had the fastest RTs (451 ms, 419 ms, and 544 ms for 0-back, 1-back, and 2-back, 

respectively).

(Figure 2) Behavioral results of the mean accuracy (A) and response time (RT)

(B). Error bars represent standard errors of the mean *p < .05, **p < .001.

Functional Neuroimaging Data

Neural Regions Associated with the Sequential Episodic Retrieval

We first calculated the contrast between forward retrieval versus backward retrieval, but this 

analysis did not indicate activation of any brain regions at a standard threshold of p < .001. In 
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contrast, when we contrasted backward retrieval versus forward retrieval, we observed activation of the 

left aVLPFC, left middle frontal gyrus, left inferior parietal lobule, and left postcentral gyrus (Table 1 

and Fig. 3), indicating that the backward retrieval of sequentially organized episodic events require 

additional demands compared to the forward retrieval condition.

Regions Hemisphere BA
MNI Coordinates

t-score
x y z

Backward recall vs. Forward recall

Inferior Frontal Gyrus L 47 −48 39 −9 4.57

Middle Frontal Gyrus L 6 −30 −9 66 4.72

L 6 −39 6 63 4.04

Inferior Parietal Lobule L 40 −39 −45 51 4.67

Postcentral Gyrus L 3 −51 −18 60 3.96

L 2 −57 −30 48 3.81

L 2 −54 −30 57 3.81

<Table 1> Whole brain GLM analyses. Results of the retrieval runs from Phases 1

(Figure 3) General linear model analysis results. Contrast results for backward versus

forward retrieval conditions

To ensure that the results obtained from this analysis did not mirror differences in the working 

memory load required, regions that overlapped with working memory results were excluded by 

subtracting the contrast results of 2-back versus 0-back (using a relaxed threshold, p < .005) from 

the overlapping map obtained above. The left aVLPFC (8 voxels) were remained after this analysis 
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was completed. These results are consistent with the prior findings that indicated the left aVLPFC 

played a crucial role in the controlled retrieval processes (Badre & Wagner, 2007).

Discriminating Temporal Retrieval Processes Using Patterns of Functional Connectivity

Given that GLM analyses did not provide information on inter-regional interactions but only 

indicated differential involvement of brain regions in sequential retrieval processes, we conducted 

intrinsic functional connectivity analysis using resting-state data to elucidate which neural regions were 

intrinsically connected each other. The left aVLPFC cluster as indicated by the GLM analyses was 

used as the seed region and interactivity (i.e., temporal correlations) of this region with the rest of 

the brain was assessed in a voxel-wise manner. The results showed a distributed connectivity maps 

encompassing the brain regions such as the bilateral superior frontal gyri, bilateral middle frontal gyri, 

bilateral inferior frontal gyri, bilateral medial frontal gyri, bilateral middle/inferior temporal gyri, 

bilateral caudate, and bilateral inferior parietal lobules (Table 2 and Fig. 4).

The intrinsic connectivity network map was then used to create a total of 31 nodes (See Section 

2.6). To examine how these intrinsically connected brain regions (i.e., 31 nodes, Table 3 and Fig. 4) 

interacted with each other during temporal episodic memory task, we conducted fcMVPA using 

task-based time-series extracted from the retrieval run. Specifically, we used fcMVPA to investigate 

whether forward and backward retrieval processes recruited qualitatively different patterns of functional 

connectivity. The accuracy results obtained using fcMVPA are shown in Fig. 5. To investigate the 

number of features (i.e., functional connectivity between two different brain regions) required to 

produce optimally informative patterns in a classification algorithm, we performed a linear SVM 

pattern classification which iterated as a function of the number of features included. The SVM 

classification accuracies were 60% with only one feature and gradually increased to 87.5% when the 

top 91 features were included. The classification performance then gradually decreased and reached an 

accuracy of 57.5% when the complete set of features was included. To test whether the obtained 

peak accuracies were statistically different from the null distribution results, we conducted permutation 

testing which showed that accuracies remained near 50% demonstrating that the peak accuracies from 

the original data were derived from distinctive patterns of functional connectivity between the two 

different retrieval conditions (91 feature permutation mean = 0.49, SD = 0.12, C.I (95%) = 0.005; 

p < .001).
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(Figure 4) Seed-selection based on resting-state analysis results. A total of 31 nodes

(shown in red dots) obtained from the seed-based resting-state analysis. Each

cube-shaped node was composed of 27 voxels centered on each peak voxel. Plotted

nodes are spherical for visualization purposes and any voxels outside of the gray matter

or image boundaries were excluded to obtain a representative time-series for each node.

From top left in a clockwise direction: sagittal (left lateral), axial (top), sagittal (right

lateral), coronal (back), axial (bottom), and coronal (front) views

The 91 features included in the peak accuracy were composed of functional connections among 

lateral and medial prefrontal regions, inferior parietal lobules, middle temporal gyrus, and caudate 

(Table 4 and Fig. 6). The interactivity patterns that discriminated between the two different 

sequential retrieval conditions encompassed regions that have been implicated in the cognitive control 

processes, such as the controlled memory retrieval regions (Badre & Wagner, 2007), the frontoparietal 

control network (Spreng, et al., 2010; Vincent, et al., 2008), the executive control network (Seeley, et 

al., 2007), and the goal-directed striatal region (Grahn, Parkinson, & Owen, 2008).

To understand the relative importance of each brain region in transferring information across the 

network, we computed the normalized betweenness centrality of each node included in the functional 

connectivity patterns that conferred peak classification accuracy. Betweenness centrality represents a 

node’s centrality in a certain network and is computed as the total number of shortest paths between 

each pair of all other nodes that passes through the node (Freeman, 1977, 1978; Girvan & Newman, 

2002). We computed the normalized betweenness centrality for each node by using the GraphVar 
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Regions Hemisphere BA
MNI Coordinates

t-score
x y z

Seed-based

Resting-state Analysis

Inferior Frontal Gyrus*

*(Left anterior VLPFC, seed region)
L 47 -45 39 -9 671.91

Superior Frontal Gyrus R 8 9 36 54 4.64

R 8 9 33 42 4.39

R 9 3 48 51 4.06

L 8 -3 42 60 4.05

Middle Frontal Gyrus L 8 -30 15 54 12.15

R 9 45 21 54 3.80

Inferior Frontal Gyrus R 47 42 42 -12 17.08

L 44 -54 15 12 13.10

L 44 -48 21 30 12.70

R 45 48 27 3 8.53

R 45 54 33 3 7.71

R 44 51 24 30 7.68

R 45 57 36 18 7.18

Supplementary Motor Area L 8 -3 21 54 9.62

Middle Temporal Gyrus L 20 -60 -45 -12 11.05

R 21 69 -30 -12 8.12

R 20 60 -33 -15 7.45

R 37 69 -51 -6 6.92

L 37 -48 -48 15 4.87

Inferior Temporal Gyrus L 20 -66 -30 -24 8.14

R 20 63 -24 -33 7.50

R 20 69 -42 -12 7.49

L 20 -48 -6 -42 7.07

R 20 69 -30 -24 6.89

L 20 -51 -24 -36 6.23

L 20 -60 -27 -33 5.66

L 20 -54 -15 -39 5.31

L 20 -51 -12 -30 4.95

R 20 54 -6 -45 4.43

R 20 63 -45 -27 4.35

R 20 54 -12 -30 4.23

R 20 45 -9 -39 4.11

Caudate R N/A 12 3 21 6.04

L N/A -9 0 18 5.93

L N/A -12 12 9 5.33

Inferior Parietal Lobule L 40 -48 -57 51 15.41

R 40 60 -48 48 7.37

Middle Occipital Lobule L 19 -39 -81 42 5.66

Angular Gyrus R 39 48 -60 54 7.46

R 37 36 -57 -42 6.45

Fusiform Gyrus R 20 39 -9 -45 4.37

Cerebellum R N/A 24 -81 -51 10.36

R N/A 36 -75 -48 8.19

R N/A 21 -69 -36 6.61

L N/A -33 -72 -45 6.12

L N/A -9 -84 -30 5.46

R N/A 12 -84 -27 5.22

L N/A -24 -87 -51 4.45

<Table 2> Seed-based resting-state analysis. The left aVLPFC cluster was used as the seed region
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toolbox (Kruschwitz, List, Waller, Rubinov, & Walter, 2015). The highly connected hub nodes with 

high betweenness centrality were located in the left caudates, right inferior parietal region, left inferior 

frontal, and inferior temporal lobule (see Table 3 last column for more node information and 

centrality degrees). Several high-ranked nodes were also located within the frontoparietal control 

network (Spreng, et al., 2010; Vincent, et al., 2008) and executive control network (Seeley, et al., 

2007), such as the lateral prefrontal regions, inferior parietal lobules, and caudate.

fcMVPA Classification Performance across the Local Networks

To investigate how the decoding accuracy would change if a set of differently parsed functional 

networks are used, we repeat the decoding analyses using different sets of nodes. Specifically, we 

conducted this analysis to see whether functional connectivity patterns constructed with local brain 

regions would be informative in distinguishing between the temporally sequential retrieval processes. 

We parsed a total of 31 nodes into sets of local nodes based on the following criteria: 1) nodes 

located in the same hemisphere (hemispheric; left and right hemispheric) to investigate an effect 

associated with functional lateralization, 2) in the same regions (intra-lobular/-regional; frontal, 

temporal, parietal, and striatal region) to understand functional connectivity within each region is 

(Figure 5) Classification results for functional connectivity multivariate pattern analysis. The

thick black lines represent the discrimination accuracies of the support vector machine

(SVM) classifier (backward vs. forward retrieval) as a function of the range of features

included. Peak accuracy of 87.5% was obtained when 91 features were included in the

classification
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Node # Node Label Hemisphere MNI Coordinates Centrality

x y z Betweenness

1 Inferior_Orbito_Frontal_L L -45 39 -9 2.76

2 Inferior_Frontal_Operculum_L L -54 15 12 1.88

3 Inferior_Frontal_Triangularis_L L -48 21 30 1.57

4 Middle_Frontal_L L -30 15 54 1.23

5 Supplimntary_Motor_Area_L L -3 21 54 1.16

6 Frontal_Sup_Medial_R_#1 R 9 36 54 1.16

7 Frontal_Sup_Medial_R_2 R 9 33 42 1.09

8 Frontal_Sup_Medial_R_#3 R 3 48 51 0.66

9 Frontal_Sup_Medial_L L -3 42 60 0.66

10 Inferior_Orbito_Frontal_R R 42 42 -12 0.53

11 Inferior_Frontal_Triangularis_R_#1 R 48 27 3 0.27

12 Inferior_Frontal_Triangularis_R_#2 R 54 33 3 -0.19

13 Inferior_Frontal_Triangularis_R_#3 R 51 24 30 -0.23

14 Inferior_Frontal_Triangularis_R_#4 R 57 36 18 -0.26

15 Middle_Frontal_R R 45 21 54 -0.28

16 Inferior_Parietal_L L -48 -57 51 -0.37

17 Middle_Occipital_L L -39 -81 42 -0.40

18 Middle_Temporal_L_#1 L -48 -48 15 -0.56

19 Middle_Temporal_L_#2 L -60 -45 -12 -0.62

20 Inferior_Temporal_L_#3 L -51 -12 -30 -0.62

21 Middle_Temporal_R_#1 R 69 -30 -12 -0.66

22 Inferior_Temporal_R_#2 R 69 -42 -12 -0.74

23 Middle_Temporal_R_#3 R 60 -33 -15 -0.84

24 Middle_Temporal_R_#4 R 69 -51 -6 -0.86

25 Inferior_Temporal_R_#5 R 54 -12 -30 -0.89

26 Angular_R_#1 R 48 -60 54 -0.89

27 Inferior_Parietal_R R 60 -48 48 -0.91

28 Angular_R_#2 R 36 -57 42 -0.91

29 Caudate_R R 12 3 21 -0.91

30 Caudate_L_#1 L -9 0 18 -0.91

31 Caudate_L_#2 L -12 12 9 -0.91

Betweenness Centrality was Z scored.

<Table 3> A total of 31 nodes generated from the seed-based resting-state connectivity analysis.

Each node consists of 27 voxels (cube-shaped) and MNI coordinates represent the center of each

node
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sufficient for discriminating two different retrieval processes, and 3) across the two different regions 

(inter-lobular/-regional; fronto-temporal, fronto-parietal, and fronto-striatal) to explore which interactivity 

across two different brain areas is most informative in classification performance. Accuracies are 

depicted in Table 5. Mostly, SVM classification with cross-validation across the parsed local networks 

produced nearly chance level performance accentuating the original results obtained from the 

large-scale brain networks and iterative pattern classification analyses. The intra-lobular network within 

the temporal and parietal regions demonstrated slightly higher classification performance with 

maximum accuracy of 65% for both network. Nonetheless, the level of accuracy is numerically lower 

than the whole-brain large-scale network we constructed above. The current comparisons support our 

notion that large-scale consideration of whole brain connectivity is crucial to identify brain connections 

which are most informative in distinguishing different sequential retrieval conditions.

(Figure 6) Visualization of included features (edges between the two nodes shown in

black lines) and nodes (shown in red dots) at the peak classification accuracies. Size of

each circle (shown in red) is proportional to the normalized betweenness centrality value
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Edge (Node #1–Node #2)Feature rank
Mean r-value

t-value
FR BR

1 'Caudate_L_#1~Inferior_Parietal_R' 0.13 0.34 2.40 

2 'Middle_Temporal_L_#2~Inferior_Frontal_Triangularis_R_#1' 0.20 0.42 2.34 

3 'Caudate_L_#1~Middle_Temporal_R_#4' 0.17 0.38 2.23 

4 'Caudate_L_#1~Inferior_Temporal_R_#2' 0.16 0.35 2.22 

5 'Caudate_L_#1~Angular_R_#1' 0.18 0.37 2.19 

6 'Middle_Temporal_L_#2~Middle_Temporal_L_#1' 0.32 0.52 2.13 

7 'Inferior_Orbito_Frontal_R~Frontal_Sup_Medial_R_#2' 0.38 0.52 2.08 

8 'Inferior_Frontal_Triangularis_R_#2~Inferior_Orbito_Frontal_L' 0.36 0.52 2.07 

9 'Middle_Temporal_R_#4~Inferior_Frontal_Triangularis_R_#1' 0.25 0.45 2.03 

10 'Caudate_L_#1~Middle_Temporal_L_#2' 0.22 0.38 1.93 

11 'Inferior_Parietal_R~Inferior_Orbito_Frontal_L' 0.27 0.42 1.92 

12 'Inferior_Parietal_R~Inferior_Frontal_Triangularis_L' 0.13 0.32 1.83 

13 'Caudate_L_#2~Inferior_Parietal_R' 0.17 0.33 1.80 

14 'Caudate_L_#1~Inferior_Temporal_L_#3' 0.20 0.35 1.78 

15 'Caudate_L_#1~Inferior_Frontal_Triangularis_R_#2' 0.29 0.44 1.77 

16 'Inferior_Parietal_R~Supplimntary_Motor_Area_L' 0.17 0.34 1.77 

17 'Middle_Temporal_L_#2~Middle_Occipital_L' 0.32 0.50 1.71 

18 'Inferior_Parietal_R~Middle_Temporal_L_#2' 0.27 0.42 1.71 

19 'Inferior_Parietal_R~Middle_Temporal_R_#4' 0.34 0.50 1.69 

20 'Caudate_L_#1~Inferior_Frontal_Triangularis_R_#1' 0.30 0.44 1.68 

21 'Middle_Temporal_R_#4~Inferior_Frontal_Triangularis_R_#3' 0.30 0.44 1.67 

22 'Inferior_Orbito_Frontal_R~Inferior_Frontal_Triangularis_L' 0.22 0.40 1.65 

23 'Middle_Temporal_R_#4~Middle_Temporal_L_#1' 0.37 0.52 1.64 

24 'Caudate_L_#1~Inferior_Orbito_Frontal_R' 0.22 0.36 1.63 

25 'Caudate_L_#1~Middle_Temporal_R_#3' 0.28 0.41 1.59 

26 'Frontal_Sup_Medial_R_#2~Inferior_Orbito_Frontal_L' 0.26 0.40 1.58 

27 'Inferior_Temporal_L_#3~Inferior_Frontal_Triangularis_L' 0.17 0.31 1.57 

28 'Inferior_Frontal_Triangularis_R_#3~Inferior_Orbito_Frontal_R' 0.30 0.45 1.56 

29 'Inferior_Frontal_Triangularis_R_#1~Inferior_Frontal_Triangularis_L' 0.33 0.44 1.55 

30 'Middle_Temporal_R_#4~Inferior_Frontal_Triangularis_R_#2' 0.29 0.44 1.54 

31 'Inferior_Temporal_R_#5~Middle_Temporal_L_#1' 0.43 0.32 1.50 

32 'Caudate_R~Inferior_Temporal_R_#2' 0.19 0.32 1.50 

33 'Inferior_Orbito_Frontal_R~Supplimntary_Motor_Area_L' 0.26 0.40 1.48 

<Table 4> Features that were included (edges between the two nodes) for peak accuracies
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Edge (Node #1–Node #2)Feature rank
Mean r-value

t-value
FR BR

34 'Caudate_R~Inferior_Temporal_L_#3' 0.19 0.32 1.48 

35 'Angular_R_#1~Inferior_Temporal_R_#5' 0.50 0.37 1.48 

36 'Middle_Temporal_R_#4~Supplimntary_Motor_Area_L' 0.17 0.31 1.46 

37 'Middle_Temporal_L_#2~Inferior_Frontal_Triangularis_R_#2' 0.26 0.39 1.44 

38 'Middle_Occipital_L~Inferior_Frontal_Triangularis_L' 0.36 0.48 1.44 

39 'Middle_Temporal_R_#4~Frontal_Sup_Medial_R_#2' 0.32 0.45 1.44 

40 'Middle_Frontal_L~Inferior_Frontal_Triangularis_L' 0.50 0.60 1.43 

41 'Inferior_Orbito_Frontal_R~Middle_Frontal_L' 0.28 0.41 1.40 

42 'Inferior_Frontal_Triangularis_R_#1~Inferior_Orbito_Frontal_R' 0.43 0.56 1.40 

43 'Inferior_Frontal_Triangularis_R_#1~Inferior_Orbito_Frontal_L' 0.34 0.45 1.39 

44 'Caudate_L_#1~Frontal_Sup_Medial_R_#1' 0.21 0.34 1.39 

45 'Angular_R_#2~Inferior_Frontal_Triangularis_R_#3' 0.67 0.56 1.39 

46 'Angular_R_#1~Frontal_Sup_Medial_R_#3' 0.57 0.47 1.35 

47 'Inferior_Temporal_R_#2~Inferior_Frontal_Triangularis_R_#2' 0.27 0.40 1.34 

48 'Inferior_Temporal_R_#2~Inferior_Frontal_Triangularis_R_#1' 0.32 0.44 1.33 

49 'Inferior_Temporal_L_#3~Supplimntary_Motor_Area_L' 0.18 0.31 1.33 

50 'Middle_Temporal_R_#4~Middle_Temporal_R_#3' 0.50 0.60 1.33 

51 'Inferior_Temporal_L_#3~Inferior_Orbito_Frontal_L' 0.36 0.46 1.33 

52 'Angular_R_#1~Inferior_Orbito_Frontal_L' 0.32 0.41 1.33 

53 'Middle_Frontal_R~Frontal_Sup_Medial_R_#2' 0.48 0.35 1.32 

54 'Inferior_Parietal_L~Supplimntary_Motor_Area_L' 0.33 0.42 1.30 

55 'Inferior_Parietal_R~Middle_Temporal_R_#3' 0.45 0.54 1.29 

56 'Middle_Temporal_L_#1~Inferior_Orbito_Frontal_L' 0.29 0.37 1.26 

57 'Inferior_Parietal_L~Inferior_Frontal_Operculum_L' 0.37 0.25 1.26 

58 'Middle_Temporal_L_#1~Supplimntary_Motor_Area_L' 0.31 0.43 1.25 

59 'Inferior_Temporal_R_#2~Supplimntary_Motor_Area_L' 0.24 0.36 1.25 

60 'Angular_R_#2~Inferior_Orbito_Frontal_L' 0.32 0.40 1.25 

61 'Caudate_L_#1~Inferior_Frontal_Triangularis_R_#3' 0.50 0.57 1.25 

62 'Frontal_Sup_Medial_L~Inferior_Frontal_Operculum_L' 0.23 0.12 1.24 

63 'Angular_R_#1~Inferior_Temporal_L_#3' 0.52 0.42 1.23 

64 'Angular_R_#1~Inferior_Frontal_Operculum_L' 0.26 0.17 1.23 

65 'Middle_Temporal_R_#3~Inferior_Frontal_Triangularis_R_#2' 0.37 0.47 1.22 

<Table 4> Features that were included (edges between the two nodes) for peak accuracies

(continued 1)
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Edge (Node #1–Node #2)Feature rank
Mean r-value

t-value
FR BR

66 'Inferior_Parietal_R~Inferior_Frontal_Operculum_L' 0.14 0.24 1.21 

67 'Inferior_Temporal_L_#3~Frontal_Sup_Medial_R_#3' 0.50 0.41 1.21 

68 'Angular_R_#1~Frontal_Sup_Medial_L' 0.56 0.47 1.21 

69 'Inferior_Temporal_L_#3~Inferior_Frontal_Triangularis_R_#2' 0.37 0.46 1.20 

70 'Inferior_Frontal_Triangularis_R_#3~Inferior_Frontal_Triangularis_L' 0.66 0.72 1.19 

71 'Caudate_R~Middle_Temporal_R_#4' 0.23 0.33 1.18 

72 'Inferior_Frontal_Triangularis_R_#3~Inferior_Frontal_Triangularis_R_#2' 0.44 0.54 1.18 

73 'Inferior_Temporal_R_#2~Middle_Occipital_L' 0.31 0.44 1.16 

74 'Inferior_Parietal_R~Inferior_Parietal_L' 0.49 0.57 1.16 

75 'Inferior_Frontal_Triangularis_R_#3~Inferior_Orbito_Frontal_L' 0.34 0.43 1.16 

76 'Inferior_Frontal_Triangularis_R_#4~Inferior_Frontal_Triangularis_L' 0.45 0.55 1.16 

77 'Middle_Temporal_L_#1~Inferior_Frontal_Triangularis_L' 0.35 0.46 1.15 

78 'Inferior_Temporal_L_#3~Middle_Temporal_L_#2' 0.30 0.42 1.15 

79 'Inferior_Parietal_R~Inferior_Temporal_R_#2' 0.41 0.50 1.15 

80 'Angular_R_#2~Middle_Temporal_R_#1' 0.40 0.30 1.15 

81 'Caudate_L_#1~Inferior_Temporal_R_#5' 0.25 0.34 1.14 

82 'Middle_Occipital_L~Inferior_Parietal_L' 0.46 0.56 1.14 

83 'Caudate_L_#2~Inferior_Frontal_Triangularis_R_#1' 0.35 0.44 1.14 

84 'Inferior_Temporal_L_#3~Inferior_Frontal_Triangularis_R_#1' 0.32 0.41 1.13 

85 'Middle_Temporal_R_#1~Middle_Frontal_L' 0.43 0.31 1.13 

86 'Inferior_Temporal_R_#2~Middle_Temporal_R_#1' 0.64 0.74 1.12 

87 'Angular_R_#1~Inferior_Frontal_Triangularis_R_#2' 0.39 0.30 1.12 

88 'Middle_Occipital_L~Middle_Frontal_L' 0.38 0.48 1.11 

89 'Caudate_L_#1~Middle_Temporal_L_#1' 0.31 0.41 1.09 

90 'Angular_R_#2~Inferior_Orbito_Frontal_R' 0.27 0.38 1.09 

91 'Middle_Temporal_R_#4~Middle_Occipital_L' 0.27 0.38 1.08 

Abbreviations: FR, forward retrieval; BR, backward retrieval; R, right hemisphere; L, left hemisphere.

<Table 4> Features that were included (edges between the two nodes) for peak accuracies

(continued 2)
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Criteria Network Label

Classification 

accuracy (%)
Included node #*

Hemispheric

Left hemisphere 40 1, 2, 3, 4, 5, 9, 16, 17, 18, 19, 20

Right hemisphere 58
6, 7, 8, 10, 11, 12, 13, 14, 15, 21, 22, 23, 24, 

25, 26, 27, 28, 29, 30

Intra-lobular/

-regional

Frontal lobe 53 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15

Temporal lobe 65 18, 19, 20, 21, 22, 23, 24, 25

Parietal lobe 65 16, 26, 27, 28

Striatal (caudate) 50 30, 31, 32

Inter-lobular/

-regional

Fronto-temporal 43
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 

15, 18, 19, 20, 21, 22, 23, 24, 25

Fronto-parietal 48
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 

15, 16, 26, 27, 28

Fronto-striatal 48
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 

29, 30, 31

* Refer to Table 3.

<Table 5> fcMVPA classification performance across separately parsed networks based on

the following criteria; hemispheric, intra-lobular/-regional, and inter-lobular/-regional

Discussion

The aim of the current study was to elucidate patterns of functional connectivity associated with 

mnemonic control processes that were implicated in backward or forward retrieval of sequentially 

organized episodic events. We demonstrated that patterns of interactivity across a large-scale brain 

network constructed distinct functional connectivity structures during the two different directional 

retrieval conditions. Importantly, the multivariate pattern classification analyses using functional 

connectivity features reached great accuracy level, demonstrating that task-based interactivity of two 

sequential retrieval processes recruited qualitatively distinct network patterns. The iterative search 

methods embedded in machine learning algorithms revealed that discriminating patterns of connections 

include the interplay of the lateral and medial prefrontal regions, inferior parietal lobules, middle 
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temporal gyrus, and caudate, previously implicated in the cognitive control of memory and 

goal-directed cognitive process. We observed that connectivity patterns restricted to the locally parsed 

networks were not substantially effective in decoding the sequential retrieval processes.

Recently, functional connectivity analysis has been widely adopted to assess intrinsic or task-related 

interactivity across distributed brain regions. In contrast to the classical connectivity studies in which 

only bivariate seed-based connectivity has been applied to the resting-state scan or psychophysiological 

interaction (PPI) analysis, the advantages of multivariate pattern analysis approach based on the 

machine learning algorithm, especially using a large-scale task-based connectivity as input data, has 

recently been emphasized. For example, studies using task-related fMRI techniques have successfully 

utilized this approach for decoding neural responses during various cognitive tasks (Pantazatos, et al., 

2012a, 2012b; Shirer, Ryali, Rykhlevskaia, Menon, & Greicius, 2012). In the present study, we 

applied the fcMVPA method to decode large-scale neural interactivity underlying controlled retrieval 

processes. Motivated by recent studies in which a novel fcMVPA approach had been applied 

(Pantazatos, et al., 2012a, 2012b), we gradually increased the number of features included with 

iteration of SVM classification processes, which resulted in a series of classification accuracies. With 

this protocol, we could monitor the changes in the pattern of accuracy as a function of the number 

of features included; and as a result, we were able to detect the features of functional connectivity 

that constructed the most informative patterns in distinguishing between the two different retrieval 

conditions.

The novel approach adopted in our methods was that we extracted condition-specific time-series 

instead of simple BOLD time-series for conducting functional connectivity analyses. To achieve this, 

we first extracted neural time-series across the whole retrieval runs and then convolved them with 

psychological factors (i.e., two different retrieval directions) to generate condition-weighted time-series 

in a voxel-by-voxel manner. Convolving neural time-series with psychological factors was originally 

used for generating interaction terms in the PPI functional connectivity approach (for a review see 

Friston, 2011; Friston, et al., 1997). In this method, researchers need to define one seed region to 

examine how other brain regions are functionally coupled with the predefined ROI. This poses a 

limitation in the number of seed regions, and the results from the PPI analysis represent a 

relationship only between the seed and other regions and not the interactivity across those regions. In 

contrast, fcMVPA allows us to examine how each brain region interacts with other areas within a 

large-scale brain network by simultaneously computing whole pair-wise cross-correlation coefficients.
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Previous studies have shown intrinsic functional coupling between the lateral PFC regions and 

sub-cortical regions such as the caudate (Barnes, et al., 2010; Han, et al., 2012), and the results 

from the resting-state functional connectivity analysis in our study corroborate those earlier findings. 

More importantly, fcMVPA revealed functional coupling between these two regions during the 

task-state period and found that this link played an important role in distinguishing between 

sequential retrieval conditions. Given the role of the caudate region in guiding goal-directed behavior 

(Grahn, et al., 2008) and updating working memory (Marklund, et al., 2009), we predict that the 

right caudate will help participants hold the received cue item in the working memory, while the left 

aVLPFC supports successful backward retrieval in which a controlled retrieval process is required. 

During backward retrieval, fcMVPA results also illustrated that the left aVLPFC had functional 

connectivity with both the right inferior parietal lobule and the middle frontal gyrus. It is important 

to note that these regions are major components of the frontoparietal network (Spreng, et al., 2010; 

Vincent, et al., 2008). Converging neuroimaging evidence suggests that components of the 

frontoparietal network, including lateral PFC, anterior cingulate cortex, and inferior parietal lobule 

regions, play a crucial role in cognitive processes in which executive control is required (Badre & 

D'Esposito, 2007; Cabeza, et al., 2008; Corbetta, et al., 2008; Koechlin, et al., 1999). One plausible 

explanation for the observed functional coupling between the left aVLPFC and the parietal and middle 

frontal nodes in the current study is that the left aVLPFC actively engages in the cognitive control 

process to access goal-relevant episodic information, while the frontoparietal network supports a more 

general goal-directed cognitive process.

The univariate GLM analyses using the contrast of backward versus forward retrieval conditions 

enabled us to observe increased activation of the left aVLPFC. Moreover, this activation did not result 

from mere differences in the working memory load required between the two conditions, but rather 

from the demand required for controlled retrieval processes. If retrieval of the studied items backward 

simply required more working memory load than completing the task in the forward direction, we 

would expect to observe similar results as those of Sun et al. (2005). In their study, the authors 

demonstrated that backward recall processes compared to forward recall resulted in higher activity in 

the dorsolateral PFC (DLPFC, BA9), which indicated that backward recall requires more executive 

functions (see also D'Esposito, Postle, & Rypma, 2000 for a review). Alternatively, it is also possible 

that participants retrieve all items from the list simultaneously, regardless of the directional cue 

instructions, but then have difficulty selecting the correct answers among the competing alternatives, 
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especially in the backward conditions (Moss, et al., 2005; Thompson-Schill, D'Esposito, Aguirre, & 

Farah, 1997; Thompson-Schill, D'Esposito, & Kan, 1999). In contrast, participants may retrieve the 

forward target easily but need to actively search their stored memories in the backward conditions to 

restore their memory representations (Badre, et al., 2005; Han, et al., 2012; Wagner, et al., 2001). 

If the former account is correct, we would expect increased activation of mid-VLPFC, which has been 

implicated in domain-general selection processes that follow retrieval and resolve competition among 

many retrieved representations. Our results demonstrated the increased involvement of left aVLPFC 

during backward retrieval supporting the latter account consistent with controlled retrieval processes 

explanation.

Although we demonstrated the active involvement of several controlled network regions, it is 

important to note that informative patterns were not merely composed of connections with either 

positive or negative correlation coefficients. Importantly, the current findings using multivariate pattern 

analysis approach suggest that connections with various correlation strengths constructed the most 

informative patterns in distinguishing between forward and backward sequential retrieval processes.

This is consistent with the idea that univariate analysis investigating the amplitude of a single region 

or bivariate seed-based connectivity analysis may not be adequate to capture the representation or 

underlying mechanism of complex cognitive processes, especially when the mechanisms involve the 

interaction of distributed nodes (i.e., Pantazatos, et al., 2012a). Nonetheless, the present study shows 

that the retrieval of sequentially organized episodic events in the backward direction requires increased 

involvement of the left aVLPFC, in which a controlled retrieval process has been implicated. Moreover, 

beyond the aVLPFC involvement did a successful retrieval of sequentially organized episodic events 

depend upon an interregional interactivity across a large-scale brain network, which has been 

implicated in goal-directed cognitive processes.

Conclusions

This study employed the fcMVPA approach to elucidate brain networks informative in 

distinguishing the backward retrieval process from the forward retrieval process. The results revealed 

that the large-scale functional connectivity patterns encompassing brain regions previously implicated in 

controlled retrieval process and goal-directed cognitive process, were substantially effective in decoding 
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the sequential retrieval processes (i.e., backward versus forward retrieval conditions). These findings 

suggest that the large-scale whole-brain networks are required during sequential retrieval processes of 

episodic memory, supporting the proposal that controlled processes across cortical and subcortical are 

recruited for the retrieval of temporal events and are mirrored in the patterns of functional 

connectivity.
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(요 약)

시간적 일화기억인출에 관여하는 뇌기능연결성 연구

나 윤 진1) 이 종 현2) 한 상 훈1),2)

1)연세대학교 심리학과
2)연세대학교 인지과학 협동과정

  부호화된 사건의 시간적 정보를 기반으로 한 인출은 일화기억의 중요한 통제기제 중 하나이다. 기억인출

과 관련한 수많은 신경영상 연구들이 진행되었음에도 아직 시간적으로 구성된 일화기억의 인출에 관여하는 

뇌신경연결망 패턴에 대해서는 알려진 바가 많지 않다. 본 연구에서는 두가지 다른 순차적 인출 뇌신경 기

제를 구분하기 위하여 과제기반 기능적 연결성 다변량 패턴분석 방법을 사용하였다. 참가자들은 시간적 일

화기억과제를 수행하였고, 순서대로 부호화된 기억자극을 순방향 혹은 역방향으로 인출하도록 지시를 받았

다. 부분적으로 분류된 국소적 신경네트워크 패턴은 두 인출기제를 잘 구분하지 못한 반면, 기억과 관련된 

인지통제 영역과 목표-지향적 인지기제처리에 관련된 것으로 알려진 여러 피질-피질하 노드들을 아우르는 

전뇌신경네트워크 패턴은 시간적 일화기억 인출기제를 잘 구분하였다. 이 영역들은 측면/내측 전전두엽 영

역, 하부 두정엽, 중간 측두회, 선조체 영역 등을 포함하며 기계학습을 이용한 분류에서 높은 분류 예측률

을 보였다. 본 연구의 결과는 일화기억의 시간적 인출기제에 관여하는 피질-피질하 여러 영역의 관여를 확

인하였고, 대역적 네트워크 패턴의 기능적 연결성이 질적으로 다른 인출기제에 관여함을 확인하였다는데에 

중요성을 갖는다.

주제어 : 통제된 인출, 기능적 연결성, 다변략패턴분석, 시간적 일화기억




