DOI QR코드

DOI QR Code

Physiological and Genetic Responses of Salt-stressed Tunisian Durum (Triticum turgidum ssp. durum) Cultivars

  • Received : 2018.09.08
  • Accepted : 2018.10.02
  • Published : 2018.12.31

Abstract

Durum (Triticum turgidum L. ssp. durum) is a major crop species cultivated for human consumption worldwide. In Tunisia, salt stress is one of the main problems that limit crop production. 'Mahmoudi' was selected as the most salt-sensitive out of 11 Tunisian durum cultivars. Using the salt-tolerant cultivar 'Om Rabia', resistant and susceptible cultivars were evaluated to compare genetic responses under salt stress. At the fully expanded third leaf stage, salt stress was applied by submerging the pots in 500 mM NaCl for 5 min every day for saline water irrigation in the greenhouse. The treatment was applied for 1 week and salt stress tolerance was determined by changes of growth parameters to the control condition. The salt tolerance trait index and salt tolerance index were calculated and used as selection criteria. The expression levels of TdHKT1;4, TdHKT1;5, and TdSOS1 were examined using qPCR. For further evaluation of physiological responses, salt stress (150 mM NaCl) was additionally applied for 48 h at the fully expanded third-leaf stage. Increased expression of the genes responsible for salt tolerance and proline content in tolerant durum can be used to broaden genetic diversity and provide genetic resources for the durum breeding program.

Keywords

References

  1. Ali, Z., A. Salam, F. M. Azhar, and I. A. Khan. 2007. Genotypic variation in salinity tolerance among spring and winter wheat (Triticum aestivum L.) accessions. South African Journal of Botany 73 : 70-75. https://doi.org/10.1016/j.sajb.2006.08.005
  2. Alqudah, A. M., H. M. Youssef, A. Graner, and T. Schnurbusch. 2018. Natural variation and genetic make-up of leaf blade area in spring barley. Theoretical and Applied Genetics 131: 873-886. https://doi.org/10.1007/s00122-018-3053-2
  3. Amar, S. B., F. Brini, H. Sentenac, K. Masmoudi, and A. -A. Very. 2014. Functional characterization in Xenopus oocytes of $Na^+$ transport systems from durum wheat reveals diversity among two HKT1;4 transporters. Journal of Experimental Botany 65 : 213-222. https://doi.org/10.1093/jxb/ert361
  4. Arabbeigi, M., A. Arzani, M. M. Majidi, R. Kiani, B. E. S. Tabatabaei, and F. Habibi. 2014. Salinity tolerance of Aegilops cylindrica genotypes collected from hyper-saline shores of Uremia Salt Lake using physiological traits and SSR markers. Acta Physiologiae Plantarum 36 : 2243-2251. https://doi.org/10.1007/s11738-014-1602-0
  5. Ashraf, M. 2009. Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnology Advances 27 : 84-93. https://doi.org/10.1016/j.biotechadv.2008.09.003
  6. Brini, F., I. Amara, K. Feki, M. Hanin, H. Khoudi, and K. Masmoudi. 2009. Physiological and molecular analyses of seedlings of two Tunisian durum wheat (Triticum turgidum L. subsp Durum [Desf.]) varieties showing contrasting tolerance to salt stress. Acta Physiologiae Plantarum 31 : 145-154. https://doi.org/10.1007/s11738-008-0215-x
  7. Cotsaftis, O., D. Plett, N. Shirley, M. Tester, and M. Hrmova. 2012. A two-staged model of $Na^+$ exclusion in rice explained by 3D modeling of HKT transporters and alternative splicing. PLoS One 7 : e39865. https://doi.org/10.1371/journal.pone.0039865
  8. El-Hendawy, S. E., Y. C. Hu, G. M. Yakout, A. M. Awad, S. E. Hafiz, and U. Schmidhalter. 2005. Evaluating salt tolerance of wheat genotypes using multiple parameters. European Journal of Agronomy 22 : 243-253. https://doi.org/10.1016/j.eja.2004.03.002
  9. Himabindu, Y., T. Chakradhar, M. C. Reddy, A. Kanygin, K. E. Redding, and T. Chandrasekhar. 2016. Salt-tolerant genes from halophytes are potential key players of salt tolerance in glycophytes. Environmental and Experimental Botany 124 : 39-63. https://doi.org/10.1016/j.envexpbot.2015.11.010
  10. Hoque, M. A., E. Okuma, M. N. A. Banu, Y. Nakamura, Y. Shimoishi, and Y. Murata. 2007. Exogenous proline mitigates the detrimental effects of salt stress more than exogenous betaine by increasing antioxidant enzyme activities. Journal of Plant Physiology 164 : 553-561. https://doi.org/10.1016/j.jplph.2006.03.010
  11. Huang, S., W. Spielmeyer, E. S. Lagudah, and R. Munns. 2008. Comparative mapping of HKT genes in wheat, barley, and rice, key determinants of $Na^+$ transport, and salt tolerance. J. Exp. Bot. 59 : 927-937. https://doi.org/10.1093/jxb/ern033
  12. James, R. A., C. Blake, C. S. Byrt, and R. Munns. 2011. Major genes for $Na^+$ exclusion, Nax1 and Nax2 (wheat HKT1;4 and HKT1;5), decrease $Na^+$ accumulation in bread wheat leaves under saline and waterlogged conditions. Journal of Experimental Botany 62 : 2939-2947. https://doi.org/10.1093/jxb/err003
  13. Khoufi, S., K. Khamassi, J. A. T. da Silva, R. Chaabane, and M. B. B. Naceur. 2012. Morphological and molecular characterization of six of the most frequently cultivated hard wheat varieties in Tunisia. Journal of Plant Breeding and Crop Science 4 : 106-114.
  14. Kim, S. H., D. Y. Kim, I. Yacoubi, and Y. W. Seo. 2014. Phenotypic and Genotypic Analyses of Drought Tolerance in Korean and Tunisian Wheat Cultivars. Plant Breeding and Biotechnology 2 : 139-150. https://doi.org/10.9787/PBB.2014.2.2.139
  15. Kim, S. H., J. Y. Kim, D. Y. Kim, J. S. Yoon, W. J. Jung, I. Yacoubi, and Y. W. Seo. 2016. Development of a SCAR marker associated with salt tolerance in durum wheat (Triticum turgidum ssp. durum) from a semi-arid region. Genes & Genomics 38(10) : 1-10. https://doi.org/10.1007/s13258-015-0342-x
  16. Li, C. X., W. G. Xu, R. Guo, J. Z. Zhang, X. L. Qi, L. Hu, and M. Z. Zhao. 2018. Molecular marker assisted breeding and genome composition analysis of Zhengmai 7698, an elite winter wheat cultivar. Scientific Reports 8 : 322. https://doi.org/10.1038/s41598-017-18726-8
  17. Machado, R. M. A. and R. P. Serralheiro. 2017. Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae 3: 30. https://doi.org/10.3390/horticulturae3020030
  18. Mansour, M. and M. Hachicha. 2014. The Vulnerability of Tunisian Agriculture to Climate Change. Emerging Technologies and Management of Crop Stress Tolerance : 485-500.
  19. Mian, A., R. J. Oomen, S. Isayenkov, H. Sentenac, F. J. Maathuis, and A. A. Very. 2011. Over-expression of an $Na^+$-and K+-permeable HKT transporter in barley improves salt tolerance. Plant J. 68 : 468-479. https://doi.org/10.1111/j.1365-313X.2011.04701.x
  20. Munns, R. 2002. Comparative physiology of salt and water stress. Plant, Cell & Environment 25 : 239-250. https://doi.org/10.1046/j.0016-8025.2001.00808.x
  21. Munns, R. and M. Tester. 2008. Mechanisms of salinity tolerance. Annu. Rev. Plant. Biol. 59 : 651-681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
  22. Munns, R. and M. Gilliham. 2015. Salinity tolerance of crops - what is the cost? New Phytol. 208 : 668-673. https://doi.org/10.1111/nph.13519
  23. Munns, R., R. A. James, B. Xu, A. Athman, S. J. Conn, C. Jordans, C. S. Byrt, R. A. Hare, S. D. Tyerman, M. Tester, D. Plett, and M. Gilliham. 2012. Wheat grain yield on saline soils is improved by an ancestral $Na^+$ transporter gene. Nature Biotechnology 30 : 360-U173. https://doi.org/10.1038/nbt.2120
  24. Sairam, R., G. Srivastava, S. Agarwal, and R. Meena. 2005. Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. Biologia Plantarum 49 : 85. https://doi.org/10.1007/s10535-005-5091-2
  25. Saqib, Z. A., J. Akhtar, M. A. Ul-Haq, and I. Ahmad. 2012. Salt induced changes in leaf phenology of wheat plants are regulated by accumulation and distribution pattern of $Na^+$ Ion. Pak. J. Agr. Sci. 49 : 141-148.
  26. Sathee, L., R. K. Sairam, V. Chinnusamy, and S. K. Jha. 2015. Differential transcript abundance of salt overly sensitive (SOS) pathway genes is a determinant of salinity stress tolerance of wheat. Acta Physiologiae Plantarum 37 : 169. https://doi.org/10.1007/s11738-015-1910-z
  27. Shafi, M., J. Bakht, M. J. Hassan, M. Raziuddin, and G. Zhang. 2009. Effect of cadmium and salinity stresses on growth and antioxidant enzyme activities of wheat (Triticum aestivum L.). Bulletin of Environmental Contamination and Toxicology 82 : 772-776. https://doi.org/10.1007/s00128-009-9707-7
  28. Shahzad, A., M. Ahmad, M. Iqbal, I. Ahmed, and G. M. Ali. 2012. Evaluation of wheat landrace genotypes for salinity tolerance at vegetative stage by using morphological and molecular markers. Genetics and Molecular Research 11 : 679-692. https://doi.org/10.4238/2012.March.19.2
  29. Shi, H., B. H. Lee, S.J. Wu, and J. K. Zhu. 2003. Overexpression of a plasma membrane $Na^+$/$H^+$ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat. Biotechnol. 21 : 81-85. https://doi.org/10.1038/nbt766
  30. Soriano, J. M., D. Villegas, M. E. Sorrells, and C. Royo. 2018. Durum Wheat Landraces from East and West Regions of the Mediterranean Basin Are Genetically Distinct for Yield Components and Phenology. Frontiers in Plant Science 9 : 80. https://doi.org/10.3389/fpls.2018.00080
  31. Wu, H., L. Shabala, M. Zhou, G. Stefano, C. Pandolfi, S. Mancuso, and S. Shabala. 2015. Developing and validating a high-throughput assay for salinity tissue tolerance in wheat and barley. Planta 242 : 847-857. https://doi.org/10.1007/s00425-015-2317-1
  32. Yildirim, M., H. Kilic, E. Kendal, and T. Karahan. 2010. Applicability of Chlorophyll Meter Readings as Yield Predictor in Durum Wheat. Journal of Plant Nutrition 34 : 151-164. https://doi.org/10.1080/01904167.2011.533319