DOI QR코드

DOI QR Code

횡단유동내 인젝터 홀의 위치에 따른 제트의 분무 특성

Spray Characteristics of Jet According to Position of Injector Hole in Crossflow

  • Choi, Myeung Hwan (Department of Mechanical and Aerospace Engineering, Graduate School, Korea Aerospace University) ;
  • Shin, Dong Soo (Department of Mechanical and Aerospace Engineering, Graduate School, Korea Aerospace University) ;
  • Radhakrishnan, Kanmaniraja (Department of Mechanical and Aerospace Engineering, Graduate School, Korea Aerospace University) ;
  • Son, Min (Department of Mechanical and Aerospace Engineering, Graduate School, Korea Aerospace University) ;
  • Koo, Jaye (School of Mechanical and Aerospace Engineering, Korea Aerospace University)
  • 투고 : 2017.06.05
  • 심사 : 2018.01.19
  • 발행 : 2018.10.01

초록

공기와 물을 사용하여 인젝터의 위치와 운동량 플럭스 비가 수직유동이 횡단유동장내의 수직 분사 제트에 미치는 영향을 정성적으로 연구하고 도시하였다. 운동량 플럭스 비를 고정하고 인젝터 홀의 위치를 변화시킨 후 역으로 인젝터 홀의 위치를 고정하고 운동량 플럭스 비를 변화시켰다. 이미지 가시화는 고속카메라를 이용하여 Shadowgraph 기법을 사용하였다. 가시화된 이미지는 밀도구배강도 이미지를 통하여 분무의 차이가 비교되었다. 장치의 x/d가 증가할수록 액주 기둥의 높이가 낮아지는 것을 확인하였다. x/d가 0일 때는 어떤 운동량 플럭스 비에서도 분무가 바닥 또는 천장에 닿게 되는 결과를 보였다.

Effects of injector position and momentum flux ratio on a vertical jet in a cross-flow field are qualitatively studied and displayed using air and water. The position of the injector hole and the momentum flux ratio is changed and image visualization is performed using a shadowgraph technique and a high-speed camera. The visualized images are compared to find differences in spraying using density gradient magnitude image. It is observed that, as the x/d of the apparatus increases, the jet break-up height decreases. When x/d is 0, the spray reaches the bottom and ceiling at any momentum flux ratio.

키워드

참고문헌

  1. Lefebvre, A.H., Gas Turbine Combustion, 3rd ed., CRC Press, Boca Raton, FL, 2010.
  2. Lefebvre, A.H., "Lean Premixed/Prevaporized Combustion," NASA CP-2016, 1977.
  3. Stenzler, J.N., Lee, J.G., Santavicca, D.A. and Lee, W., “Penetration of Liquid Jets in a Cross-flow,” Atomization and Sprays, Vol. 16, No. 8, pp. 887-906, 2006. https://doi.org/10.1615/AtomizSpr.v16.i8.30
  4. Wangner, J.A. and Renfro, M.W., "Premixed Jet Flame Behavior in a Hot Vitiated Crossflow of Lean Combustion products," Combustion and Flame, Vol. 176, pp. 521-533, 2017. https://doi.org/10.1016/j.combustflame.2016.11.014
  5. Eldrainy, Y.A., Bin Ahmad Ibrahim, M.F. and Jaafar, M.N.M., “Investigation of Radial Swirler Effect on Flow Pattern inside a Gas Turbine Combustor,” Modern Applied Science, Vol. 3, No. 5, pp. 21-30, 2009.
  6. Liscinsky, D., True, B. and Holdeman, J., "Experimental Investigation of Crossflow Jet Mixing in a Rectangular Duct," 29th Joint Propulsion Conference and Exhibit, Monterey, California, U.S.A., AIAA 1993-2037, June 1993.
  7. Kim, D.H., Lee, K.W., Son, M and Koo, J.Y., “Visualization of Gas-centered Swirl Sprays in Sub to Super Critical Conditions,” Journal of the Korean Society of Propulsion Engineers, Vol. 18, No. 3, pp. 26-33, 2014. https://doi.org/10.6108/KSPE.2014.18.3.026
  8. Lee, K.W., Kim, D.H., Son, M., Han, J.Y. and Koo, J.Y., “Analysis of Supercritical Shear Coaxial Jet Using Density Gradient Magnitude,” Journal of the Korean Society of Propulsion Engineers, Vol. 17, No. 6, pp. 59-66, 2013. https://doi.org/10.6108/KSPE.2013.17.6.059
  9. Homicz, G.F., "Computational Fluid Dynamic Simulations of Pipe Elbow Flow," SAND 2004-3467, 2004.
  10. Richards, W.S. and Steinberg, A.M., "Trajectory and Breakup of Cryogenic Jets in Crossflow," 52nd AIAA/SAE/ASEE Joint Propulsion Conference, Toronto, Ontario, Canada, AIAA 2016-4788, July 2016.