Numerical Study on an E-D Nozzle Characteristics with Various Pintle Inflection Angles

핀틀 변곡 각도에 따른 E-D 노즐 특성에 대한 전산수치해석 연구

  • Park, Sanghyeon (Department of Aerospace Engineering, Graduate School of Chungnam National University) ;
  • Moon, Taeseok (Department of Aerospace Engineering, Graduate School of Chungnam National University) ;
  • Huh, Hwanil (Department of Aerospace Engineering, Chungnam National University)
  • Received : 2017.11.13
  • Accepted : 2018.06.10
  • Published : 2018.12.01


In this study, a numerical study was conducted to characterize the E-D nozzle which changes according to the nozzle pressure ratios. Three different numerical analysis models were designed by changing the pintle inflection angles. When the nozzle pressure ratio is low, the outside air flows into the E-D nozzle to form an open flow field. As the nozzle pressure ratio increases, the flow transition occurs to become the closed flow field where the recirculation region is isolated inside the nozzle. Also, the highest thrust coefficient was obtained in the analytical model with high pintle inflection angle at all nozzle pressure ratios.

본 논문에서는 E-D 노즐 공압 실험 연구의 선행 연구로써, 노즐 압력비에 따라 변화하는 E-D 노즐특성 파악을 위한 해석적 연구가 수행되었다. 설계 변수 중, 핀틀 변곡 각도를 하나의 변수로 하여 서로 다른 세 가지 수치해석 모델을 설계하였다. 노즐 압력비가 낮을 때는 E-D 노즐 내부로 외부 대기가 유입되어 개방 유동장이 형성되었다. 노즐 압력비가 높아짐에 따라 노즐 내부에 재순환 영역이 고립되는 폐쇄 유동장으로 유동 천이가 발생함을 확인하였다. 또한, 전체 노즐 압력비 구간에서 핀틀 변곡 각도가 높은 해석 모델에서 가장 높은 추력 계수가 도출되었다.


Supported by : 한국연구재단


  1. Hagemann, G., Immich, H., Nguyen, T.V. and Dumnov, G.E., "Advanced rocket nozzles," Journal of Propulsion and Power, Vol. 14, No. 5, pp. 620-634, 1998.
  2. Wagner, B., Stark, R., and Schlechtriem, S., "Experimental Study of a Planar Expansion-Deflection Nozzle Flow Field," 4th European Conference for Aerosapce Sciences, Saint Petersburg, Russia, pp. 641-654, July, 2011.
  3. Goetz, A., Hagemann, G. and Kretschmer, J., "Advanced Upper Stage Propulsion Concept-The Expansion-Deflection Upper Stage," In 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Tucson, Arizona, pp. 3752, 2005.
  4. Taylor, N.V. and Sato, T., "Experimental and Computational Analysis of an Expansion Deflection Nozzle in Open-wake Mode," 26th AIAA Applied Aerodynamics Conference, Honolulu, Hawaii, pp. 6924, 2008.
  5. Taylor, N.V., Hempsell, C.M., Macfarlane, J., Osborne, R., Varcill, R., Bond, A. and Feast, S., "Experimental Investigation of the Evacuation Effect in Expansion Deflection Nozzles," Acta Astronautica, Vol. 66, pp. 550-562, 2010.
  6. Taylor, N.V. and Hempsell C.M., "Throat Flow Modelling of Expansion Deflection Nozzles," JBIS, Vol. 57, pp. 242-250, 2004.
  7. Wagner, B. and Schlechtriem, S., "Numerical and Experimental Study of the Flow in a Planar Expansion-Deflection Nozzle," In 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, San Diego, California, Vol. 5942, 2011.
  8. Schomberg. K., Olsen. J., Neely. A., and Doig, G., "Experimental Analysis of a Linear Expansion-Deflection Nozzle at Highly Overexpanded Conditions," 19th Australasian Fluid Mechanics Conference, Melbourne, Australia, pp. 74-77, 2014.
  9. Schomberg, K., Doig, G. and Olsen, J., "Geometric Analysis of the Linear Expansion-Deflection Nozzle at Highly Overexpanded Flow Conditions," 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Cleveland, OH, pp. 4001, July, 2014.
  10. Moon, T.S., Park, S.H., Choi, J.S., and Huh, H., "Research Trends of an E-D Nozzle for Altitude Compensation," Journal of the Korean Society for Aeronautical and Space Science, Vol. 45, No. 10, pp. 844-854, 2017.
  11. Kam, H.D., and Kim, J.S., "Assessment and Validation of Turbulence Models for the Optimal Computation of Supersonic Nozzle Flow," Journal of the Korean Society of Propulsion Engineers, Vol. 17, No. 1, pp. 18-25, 2013.