DOI QR코드

DOI QR Code

Dust collection optimization of tunnel cleaning vehicle with cyclone-based prefilter

사이클론 전처리부를 지닌 터널집진차량의 집진효율 최적화

  • Jeong, Wootae (Transportation Environmental Research Team, Korea Railroad Research Institute)
  • 정우태 (한국철도기술연구원 교통환경연구팀)
  • Received : 2018.01.19
  • Accepted : 2018.03.09
  • Published : 2018.03.31

Abstract

A new dust cleaning vehicle is needed to remove fine and ultra-fine particulate matter in subway tunnels. Therefore, the recently developed tunnel cleaning vehicle is equipped with an efficient suction system and cyclone-based prefilter to handle ultra-fine particles. To treat various sizes of particulate matter with an underbody suction system, this paper proposes a cyclone-based prefilter in the suction system and validates the dust removal efficiency through Computational Fluid Dynamics (CFD) analysis using ANSYS FLUENT. Using the created surface and volume mesh, various particle sizes, materials, and fan flow rates, the particles were tracked in the flow with a discrete phase model. As a result, the dust cleaning vehicle at a normal operational speed of 5km/h requires at least a fan flow rate of $1500m^3/min$ and 100mm of suction inlet height from the tunnel track floor. Those suction modules and cyclone-based prefilters in the dust cleaning vehicle reduces the dust accumulation load of the electric precipitator and helps remove the accumulated fine and ultra-fine dust in the subway tunnel.

지하철 터널 내에 축적된 미세먼지와 초미세먼지를 제거하기 위해서는 새로운 형식의 분진흡입차량이 필요하다. 따라서 최근 개발된 분진흡입차는 초미세먼지 제거를 위한 흡입시스템과 사이클론형식의 전처리부 및 전기집진기를 장착하고 있다. 본 논문에서는 집진차량의 하부에 설치된 먼지 흡입시스템이 다양한 크기의 먼지입자를 효과적으로 흡입하고 처리하기 위해 사이클론형식의 전처리부가 포함된 집진시스템을 설계하고 집진효율을 ANSYS FLUENT의 전산유체해석을 통해 확인하였다. 흡입구와 사이클론형 프리필터가 연결된 격자모델을 기반으로 공기유동과 상차분모델(Discrete Phase Model)을 이용하여 다양한 입자의 크기와 종류 및 흡입팬의 용량에 따른 입자의 거동을 해석하였다. 다양한 입자의 크기와 종류, 흡입팬의 용량에 대해서 해석결과 집진차량의 운영속도 5km/h에서 미세먼지처리를 위해서는 흡입팬의 용량 $1500m^3/min$에서 흡입구가 궤도면으로부터 약 100mm이내일 때 $100{\mu}m$ 이하 크기의 먼지를 모두 처리할 수 있음을 확인하였다. 이러한 흡입구와 사이클론형식의 프리필터를 탑재한 터널집진차량은 후단에 설치된 전기집진기의 부하를 줄이고, 지하 터널내의 미세먼지와 초미세먼지의 제거에 효과적으로 활용될 수 있을 것으로 기대된다.

Keywords

References

  1. L. M. Brosseau, et al., "Dust cleaning: a review of associated health effects and results of company and expert surveys", ASHRAE Transaction, vol. 106, pp. 180-187, 2000.
  2. M. Kim, et al., "Evaluation of passenger health risk assessment of sustainable indoor air quality monitoring in metro systems based on a non-Gaussian dynamic sensor validation method", Journal of Hazardous Materials, vol. 278, pp. 124-133, 2014. DOI: https://doi.org/10.1016/j.jhazmat.2014.05.098
  3. S.-B. Kwon, et al., "Study on the indoor air quality of Seoul metropolitan subway during the rush hour", Indoor and Built Environment, vol. 17, pp. 361-369, 2008. DOI: https://doi.org/10.1177/1420326X08094683
  4. W. Jeong, "Flow control of air blowing and vacuuming module usiing Coanda effect", Journal of the Korea Academia-Industrial Cooperation Society, vol. 18(3), pp. 115-121, 2017. DOI: https://doi.org/10.5762/KAIS.2017.18.1.115
  5. C. M. Ma, et al., "Chemical Properties and Source Profiles of Particulate Matter Collected on an Underground Subway Platform", Asian Journal of Atmospheric Environment, vol. 9(2), pp. 165-172, June, 2015. DOI: https://doi.org/10.5572/ajae.2015.9.2.165
  6. D. Park, et al., "Identification of the source of PM10 in a subway tunnel using positive matrix factorization", Journal of the Air & Waste Management Association, vol. 64(12), pp. 1361-1368, 2014. DOI: https://doi.org/10.1080/10962247.2014.950766
  7. W. C. Hinds, "Aerosol technology: properties, behavior, and measurement of airborne particles", A Wiley Interscience Publication, 2012.
  8. S. A. Dickenson and J. J. Sansalone, "Discrete phase model representation of Particluar Matter (PM) for simulating PM separation by hydrodynamic unit operations", Environmental Science & Technology, vol. 43(21), pp. 8220-8266, 2009. DOI: https://doi.org/10.1021/es901527r
  9. S. A. Moris and A. J. Alexander, "An investigation of particle trajectories in two-phase flow systems", Journal of Fluid Mechanics, vol. 55(2), pp. 193-208, 1972. DOI: https://doi.org/10.1017/S0022112072001806