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Abstract

This paper introduces a new method to study the hydroelastic behavior of hinged Very Large Floating Structures (VLFSs). A hinged two-
module structure is used to confirm the present approach. For each module, the hydroelasticity theory proposed by Lu et al. (2016) is adopted to
consider the coupled effects of wave dynamics and structural deformation. The continuous condition at the connection position between two
adjacent modules is also satisfied. Then the hydroelastic motion equation can be established and numerically solved to obtain the vertical
displacement, force and bending moment of the hinged structure. The results calculated by the present new method are compared with those
obtained using three-dimensional hydroelasticity theory (Fu et al., 2007), which shows rather good agreement.
Copyright © 2017 Society of Naval Architects of Korea. Production and hosting by Elsevier B.V. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Very Large Floating Structures (VLFSs) are very flexible
offshore structures which are widely regarded as an alternative
option of ocean space utilization. Due to their obvious ad-
vantages including environmental friendliness, easy and fast
construction and removal and low cost in construction, VLFSs
have been gradually designed for various applications such as
floating airports, bridges, oil storage facilities and floating
artificial island. Most VLFSs can be categorized into two
types, i.e. single-module VLFS and interconnected multi-
module VLFS. For these flexible floating structures, the
coupling between structural deformation and fluid field be-
comes a significant factor when it comes to their dynamic
response in waves. For single-module VLFSs, many theories
have been proposed to predict their response (Wu, 1984;

Tsubogo and Okada, 1998; Tuitman et al., 2012; Lu et al.,
2016). Based on these theories, the dynamic response of
various types of VLFSs has been investigated. Wu et al. (2014)
calculated the hydrodynamic response of multi-leg floating
structures. Pan et al. (2015) investigated the hydrodynamic
response of mooring lines for a large floating structure in the
South China Sea.

For hinged multi-module VLFSs, some researchers
(Newman, 1994; Gou et al., 2004) studied their dynamic
response by neglecting the elastic deformation of the structure.
Fu et al. (2007) combined three-dimensional hydroelasticity
theory and multi-rigid-body kinematics to consider the
hydroelastic response of an articulated VLFS. In addition, the
Mindlin plate element method was also used to obtain the
hydrodynamic response of two articulated VLFSs (Kim et al.,
2007; Gao et al., 2011). Riyansyah et al. (2010) used the
EulereBernoulli beam to study articulated VLFSs without
considering the effect of the floating body on the fluid.

The purpose of this paper is to propose a new method to
calculate the hydroelastic response of interconnected multi-
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module VLFSs. The hinge is assumed to be rigid while each
module of the VLFSs is assumed to be flexible with structural
deformation considered. As a simple case, the hinged two-
module VLFS model adopted by Fu et al. (2007) is used
here to confirm the present method. The present approach is a
combination of the hydroelasticity theory for a single-module
continuous VLFS proposed by Lu et al. (2016) and hinged
rigid multi-body theory. For each module, the hydroelasticity
theory proposed by Lu et al. (2016) is adopted to consider the
coupled effects of wave dynamics and structural deformation.
At the hinged position, the method of Gou (Gou et al., 2004) is
used to consider the continuous condition. Then the hydroe-
lastic motion equation can be established and numerically
solved to obtain the vertical displacement, force and bending
moment of the hinged structure. All results calculated by the
present approach are compared with those obtained by three-
dimensional hydroelasticity theory (Fu et al., 2007).

2. Basic theory

2.1. Multi-body hydroelasticity theory

As the results calculated using the present approach are
compared with those obtained by three-dimensional hydro-
elasticity theory proposed by Fu et al. (2007), this paper will
give a brief introduction of Fu's method before we move for-
ward to a detailed description of the present approach. For
simplicity, we avoid listing many mathematical equations and
introduce the main idea of Fu's method (more details can refer
to Fu's paper). Actually, the approach proposed by Fu et al.
(2007) is classic three-dimensional hydroelasticity theory, in
which the hydroelastic response of flexible floating structures
can be calculated in three main steps:

(1) Evaluation of the dry natural oscillation mode for hinged
two-module flexible structure.

(2) Evaluation of the hydrodynamic coefficients (added mass,
radiation damping and wave excitation force) for each
mode.

(3) Solving the coupling modal equation to obtain the
hydroelastic response of the hinged flexible structure.

The hydroelasticity theory for a continuous flexible struc-
ture proposed by Lu et al. (2016) is adopted in this paper.
Unlike traditional three-dimensional hydroelasticity theory
(Fu et al., 2007), in the approach proposed by Lu et al. (2016),
the coupling between structural deformation and fluid field is
considered by (imaginarily) dividing the continuous structure
into several submodules and adding a virtual beam between
the center of each submodule. Then multi-body hydrody-
namics and beam bending theory can be combined together to
deal with the dynamic response of flexible structure without
considering the natural mode of the dry structure. The present
work actually extends Lu's theory to deal with a more complex
problem, i.e. the dynamic response of (rigidly) hinged multi-
module flexible structure (not a continuous structure in the
Lu's work) in waves. For the integrity of the paper, we will re-

visit the method of Lu et al. (2016) in this section. For the
hydrodynamic aspect, this paper adopts the assumption of
ideal fluid, i.e., the fluid is inviscid, irrotational, and incom-
pressible. The incident wave amplitude is assumed to be small
relative to a characteristic wavelength and body dimension,
and therefore linear Airy wave theory can be applied. The
hydrodynamic coefficients of the equivalent multi-module
floating structures considering diffraction and radiation ef-
fects can be calculated using the conventional potential theory
(In this paper, the commercial software Hydrostar is used to
obtain these hydrodynamic coefficients).

Fig. 1 is a schematic of hinged multi-module flexible
floating structure and its surrounding fluid field. The number
of modules for the floating structure is m. Two adjacent
modules are hinged together. In Lu's theory, a continuous
(single-module) flexible structure is divided into several sub-
modules to approximately consider the coupled effects of
wave dynamics and structural deformation (using multi-body
hydrodynamics and beam theory). So for multi-module flex-
ible structure, each module is divided into several submodules
(the number of submodules for each module is n shown in
Fig. 1). Based on the assumptions of an ideal fluid and line-
arity, the velocity potential can be decomposed into three parts
as follows:

f¼ fI þfD þfR ð1Þ

where fI, fD and fR denotes, respectively, the incident wave
potential, diffraction wave potential, and radiation wave po-
tential. The incident, diffraction potential and radiation po-
tential satisfy the following boundary conditions:
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where (see Fig. 1) U is the fluid domain, and SF, SB, and S∞ are
the free surface, bottom surface, and the boundary surface at
infinity of the fluid, respectively. Sk (Sj) represents the wetted
body surface of the kth ( jth) submodule (k, j ¼ 1, 2,…, n � m;

js k). n!k represents the outward-directed unit vector normal

to the wetted surface of the kth submodule, V
!

Sk is the velocity
of a given point on the wetted surface of the kth submodule,
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and f is the velocity potential (In Eq. (2), f can be replaced by
fI, fD or fR). r is the distance between the far-field point and
the source point. After the velocity potential f is obtained, the
added mass and the radiation damping of these submodules as
well as the wave excitation force can be calculated.

In the frequency domain, the excitation forces are related to
the incident and diffracted wave potentials as follows:

F
!

exk ¼ riu∬
S0k

ðfI þfDÞ$ n!kdS ð3Þ

where i, F
!

exk, r, u and S0k are the imaginary unit, wave
excitation forces, fluid density, wave frequency, and average
wetted surfaces, respectively.

The added mass and radiation damping is given by

�
akj

�þ i

u

�
bkj

�¼ r∬
S0k

fRj$ n
!

kdS: ð4Þ

where [akj] is the added mass matrix of the kth submodule
induced by the motion of the jth submodule, [bkj] is the ra-

diation damping matrix of the kth submodule caused by the
motion of the jth submodule (k, j ¼ 1, 2, …, n � m).

The equation of motion of freely floating multi-body sys-
tem (In Fig. 1, the multi-body system comprises m � n sub-
modules and each submodule has a six degree-of-freedom
motion) in the frequency domain for a unitary wave amplitude
and a wave frequency u is given as follows:

where [М k] is the mass (or inertia moment) matrix of the kth
submodule, [akk]is the added mass (or added mass moment)
matrix of the kth submodule caused by the motion of the
submodule itself, [bkk] is the radiation damping matrix of the
kth submodule caused by the motion of the submodule itself,
[Ck] is the hydrostatic stiffness matrix of the kth submodule,
{fexk} is the wave excitation force (or moment) of the kth
submodule, and {uk} is the six DOF displacement of the kth
submodule expressed as (xk, yk, zk, ak, bk, gk)

T. It should be
noted that in Eq. (5), the restraint of displacement due to the
existence of hinge connections and the structural deformation
of each submodule are not considered. The dimension is 6 � 6
for [М k], [akk], [bkk], [Ck], [akj] and [bkj] and 6 � 1 for {uk} and
{fexk} (k, j ¼ 1, 2, …, n � m).

If the displacement restraint due to the existence of hinge
connections is taken into account (for example, the hinge
connection between the submodule n and n þ 1, 2n and
2n þ 1, …, (m � 1) � n and (m � 1) � nþ1 shown in Fig. 1),
Eq. (5) can be modified as follows (refer to Gou et al., 2004),

where {FLk} (the dimension is 6 � 1) is the force and moment
acting on the floating structure caused by the connection piece,
which only exists in the two connected submodules (for
example, as shown in Fig. 1, {FLk}s{0} for k ¼ n, n þ 1, 2n,
2n þ 1, …, (m � 1) � n, (m � 1) � n þ 1. However, for k
being other values, {FLk} ¼ {0}). m is the number of modules
for the floating system. In order to solve the equations, the

Fig. 1. Definition of the fluid and structure boundaries.
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continuous condition of displacement at the connection point
is needed. The translational motion of two hinged submodules
is the same while the angular motion is different. Only angular
motion around the y axis is allowed with a rigid horizontal
hinge shaft (parallel to the y axis). The continuous displace-
ment condition is expressed as follows:

½L�fugi�j ¼ ½0 0 0 0 0 �T ð7Þ

In Eq. (7), fugi�j ¼ ½fuigTfujgT �T (the dimension is 12 � 1)
is the displacement of hinged submodules i and j. The restraint
coefficient matrix [L] is given as

½L�¼

2
66664

1 0 0 0 zi �yi �1 0 0 0 �zj yj
0 1 0 �zi 0 xi 0 �1 0 zj 0 �xj
0 0 1 yi �xi 0 0 0 �1 �yj xj 0
0 0 0 1 0 0 0 0 0 �1 0 0
0 0 0 0 0 1 0 0 0 0 0 �1

3
77775

5�12

ð8Þ

where, ðxi; yi; ziÞ andðxj; yj; zjÞ are the local coordinates of the
connection point in the body-fixed coordinate system of sub-
module i and submodule j, respectively. It should be noted that
for each submodule, the local coordinate system has the origin
at the center of gravity of the submodule.

We denote the force (and moment) on the pth hinge piece
as ff pL g ¼ ðf pL1; f pL2; f pL3; f pL4; f pL5ÞT , the component of which
represents, respectively, the force in x, y, z direction and the
moment with respect to x and z axis (as the hinge shaft is
parallel to the y axis, the moment with respect to y axis is zero
and is not included in the force vector). Then the force and
moment acting on the ( p � n)th and ( p � n þ 1)th submodule
caused by the hinge piece is give as follows:

�fFLgp�n

fFLgp�nþ1

�

12�1

¼�½L�T12�5ff pL g5�1 ð9Þ

If we apply the method proposed by Lu et al. (2016) to each
module (each module will be divided into several submodules
to approximately consider the coupling effects of structural
deformation and fluid field) of the hinged multi-module flex-
ible structure, the motion of the center of a submodule is
restricted by the deformation condition of the equivalent beam
between two submodules. This means that the motion of the
kth submodule will be affected by its adjacent submodules
(k � 1)th and (k þ 1)th in terms of structural deformation. For
the first and the last (the (m � n)th) submodule, the motion is
only affected by the second and the (m � n � 1)th submodule,
respectively. Based on this analysis, Eq. (6) will be modified
as follows:

ð �u2ð½Mk� þ ½akk�Þ � iu½bkk� þ ½Ck�
�fukg

þ Pn�m

j¼1;jsk

��u2
�
akj

�� iu
�
bkj

��	
uj

¼ ffexkgþ fFLkgþ fFSkg

ðk ¼ 1;2; :::;m� nÞ
ð10Þ

wherefFSkg is the force (and moment) acting on the kth sub-
module caused by the structural deformation of the equivalent

beam between the adjacent submodule and itself. The
expression of fFSkg will be given in Section 2.2.

By solving Eq. (10), the six DOF motion of each body and
the forces on the connectors can be obtained, and then the
deformation and force of the structure can be obtained using
Lu's method (Lu et al., 2016).

2.2. Solution of deformation and force

In order to approximately consider the coupling between
the structural deformation and fluid field, the six degree-of-
freedom (DOF) motion of a submodule's center is restricted
by the deformation condition of the equivalent beam between
two adjacent submodules (For more details, refer to Lu et al.,
2016).

Each side of the beam element i � j has six components of
displacements and forces (shown in Fig. 2):

fugi�j ¼
h
fugTi fugTj

iT
¼ �

xi;yi; zi;ai;bi;gi;xj;yj; zj;aj;bj;gj

�T

fFgi�j ¼
h
fFgTi fFgTj

iT
¼ �

Fxi;Fyi;Fzi;Mxi;Myi;Mzi;Fxj;

Fyj;Fzj;Mxj;Myj;Mzj�T ð11Þ

where (Fxi, Fyi, Fzi) are forces in the ith cross section, (Mxi,
Myi, Mzi) are the corresponding bending moments. Similar
expressions can be obtained for the jth cross section. Gener-
ally, the forces and moments are assumed to be imposed on the
center of the cross section of the beam element.

The relationship between {u}i�j and {F}i�j is:

fFgi�j ¼ ½K�i�jfugi�j ð12Þ

where [K]i�j is stiffness matrix, the form of which is given in
the Appendix. A detailed explanation of the stiffness matrix
can be found in the reference (McGuire et al., 2000). The size
of the matrix is 12 � 12. The matrix is affected by the geo-
metric size of each submodule, Young modulus and Poisson
ratio.

Next, we will give the expression of fFSkg in Eq. (10). As
shown in Fig. 3, fFSkg is the force (and moment) acting on the
kth submodule caused by the structural deformation of the
equivalent beam between the adjacent submodule and itself

Fig. 2. The coordinate of space structure.
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(i.e., imaginary beam k � 1 and k). According to Eq. (12), we
can establish the relationship between force and displacement
for both beam k � 1 and k, as follows,

�fFgk�1
k�1

fFgk�1
k

�
¼�

"
½K�k�1

k�1;k�1 ½K�k�1
k�1;k

½K�k�1
k;k�1 ½K�k�1

k;k

#�fugk�1
k�1

fugk�1
k

�
ð13Þ

�fFgkk
fFgkkþ1

�
¼�

"
½K�kk;k ½K�kk;kþ1

½K�kkþ1;k ½K�kkþ1;kþ1

#�fugkk
fugkkþ1

�
ð14Þ

where the superscript represents the order number of the beam
and the subscript represents the order number of the sub-
module's center. ½K�k�1

k�1;k�1 and ½K�k�1
k�1;k, etc. are the partitioned

matrix of the stiffness matrix shown in the Appendix. It should
be note that fugk�1

k ¼ fugkk. So we may neglect the superscript
of the displacement matrix. Thus we have the expression
fFSkg as follows,

fFSkg ¼ fFgk�1
k þfFgkk

¼�
h
½K�k�1

k;k�1 ½K�k�1
k;k þ ½K�kk;k ½K�kk;kþ1

i
6�18

�fugTk�1

fugTk fugTkþ1�T18�1 ð15Þ

Lu et al. (2016) proposed an approach for the computation
of the displacement along a continuous (single-module) VLFS
based on the spatial beam theory. In this paper, a more
generalized method will be developed.

It can be seen from Eq. (12) that once the displacement
{u}i�j has been solved, the load on the section of the beam
{F}i�j can be computed. For a given spatial beam, the
displacement along the beam can be calculated based on the
displacement and loads on the cross section at the end of the
beam.

Eq. (12) can be rewritten as
�fFgi
fFgj

�
¼
� ½K�ii ½K�ij
½K�ji ½K�jj

��fugi
fugj

�
ð16Þ

The force {F}i and {F}j can be obtained once the
displacement {u}i and {u}j have been solved.

In order to calculate the displacement {u}l and force {F}l at
any position along the beam, Eq. (16) is modified as follows
�fFgi
fFgl

�
¼
� ½K�ii ½K�il
½K�li ½K�ll

��fugi
fugl

�
ð17Þ

Then the displacement {u}l and force {F}l can be
computed by


fugl ¼ ½K��1
il

�fFgi � ½K�iifugi
�

fFgl ¼ ½K�lifugi þ ½K�ll
	½K��1

il

�fFgi � ½K�iifugi
�
 ð18Þ

Eq. (18) can give all the six components of displacement
along the VLFS, which is a big improvement of the original
method proposed by Lu et al. (2016).

In the origin work of Lu, the continuous distribution force
are simplified as the concentrated force on the gravity center
of the sub-module, only the connection interface of the sub-
modules are exactly right. However, it can be seen from Eq.
(18) that on the exact point (the connection interface of the
sub-modules), both the bending moment value and its partial
derivative with respect to the variable x are known. Therefore
the higher order interpolation scheme can be applied. Li et al.
(1986) shows that the interpolation cures can be cubic order if
both the point value and its partial derivative of the two ending
points are known, i.e. fxi;Myi;Fzig andfxiþ1;Myiþ1;Fziþ1g
are known. Here, xi, Myi and Fzi represents the position,
bending moment and shear force, respectively, which follows
the definition of symbols in Eq. (11). Then the interpolation
curve can be expressed as:

MðxÞ ¼ aþ bxþ cx2 þ dx3 ð19Þ
where

2
664
a
b
c
d

3
775¼

2
664
1 xi x2i x3i
1 xiþ1 x2iþ1 x3iþ1

0 1 2xi 3x2i
0 1 2xiþ1 3x2iþ1

3
775

2
664

Myi
Myiþ1

Fzi
Fziþ1

3
775 ð20Þ

Since in the current method, both the bending moment and
the shear force are taken into account when solving the
bending moment distribution along the VLFS, then the inter-
polation accuracy must be higher than the original method of
Lu.

3. Numerical examples

In order to validate the new method proposed in this paper,
we investigated two cases in this section: one is a hinged two-
module rigid structure; the other is a hinged two-module
flexible structure.

3.1. A hinged two-module rigid structure

The hinged two-module rigid structure investigated by
Newman (1994) is used in this test. The model comprises two
identical homogeneous square modules hinged together so as to
allow relative rotation around the y axis. In the calculation, the
water depth is assumed to be infinite. The schematic of the two
square modules is shown in Fig. 4 (the distribution of grids is
40� 10� 5). The size of each square module is, and the draft is
5 m. The wave direction is 0�, parallel to the x axis. The grids
used in the hydrodynamic calculation are also shown.

submodule k-1 submodule k submodule k+1

imaginary beam k-1 imaginary beam k

center k-1 center k center k+1

Fig. 3. A schematic of submodules and imaginary beam between adjacent

submodules.
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Based on the numerical calculation, the relative pitch angle
of the two square modules and the displacement at the
connection point is compared with Newman's results. Fig. 5
shows the relative pitch angle (a) of the two square mod-
ules, which is normalized by the wave steepness (KA, with K
being the wave number and A the incident wave amplitude).
Fig. 6 gives the normalized heave displacement of the
connection point. As can be seen from Figs. 5 and 6, the re-
sults calculated by the present numerical method (using the
commercial code Hydrostar) are in good agreement with the
results of Newman (1994). The fluctuation shown in Figs. 5
and 6 is caused by the period of incident wave close to the
natural period of the floating system (Gou et al., 2004).

3.2. A hinged two-module flexible structure

To illustrate this methodology, this paper uses the model
described by Yokosuka (see the reference, Yago and Endo,
1996). This VLFS is a scale model of the Mega-Float, con-
structed and developed for use in sheltered waters. The main
parameters of the floating system are listed in Table 1. In order
to get a hinged two-module flexible structure which has the
same dimension as the one described by Yokosuka, we divided
the continuous model into two parts and the two modules are

hinged together. The model was also adopted for hydro-
elasticity analysis by Fu et al. (2007). The result calculated by
the method presented in this paper is compared to those of Fu.

In Fig. 7, the hinged connector are at the middle of longi-
tudinal direction of the structure and parallel to the width di-
rection ( y axis). P2 represents the position where the hinged
shaft is located. P1 is the center of the cross section at the left
side of the structure. The waves pass from the left to the right
and the amplitude is 1 m. In this calculation, each of the two
modules is divided into four submodules to approximately
couple the structural deformation and fluid field. So the total
number of submodules for the two-module flexible structure is
eight. For an illustrative purpose, this paper only calculates the
case shown in Fu's paper (Fu et al., 2007).

In Fig. 8, the vertical response amplitude of the longitudinal
centerline is calculated for four different wavelengths. The
result for hinged two-module rigid structure is also shown. The
value calculated by three-dimensional hydroelasticity theory is
expressed as “Fu et al., 2007”; the result of the present method
“Present”; and the result of hinged two-module rigid structure
“Rigid”. It is clear that the result calculated using the present
approach is in good agreement with Fu's results, but the results
for rigid structure are very different (due to structure defor-
mation being neglected). All the results show that the elasticity
has great influences on the hydrodynamic response of the
hinged flexible structure.Fig. 5. Relative angular deflection.

Fig. 6. Heave amplitude at the hinged joint.

Table 1

Parameters of the floating system.

Parameters Units Value

Length m 300

Width m 60

Depth m 2

Draft m 0.5

Young's modulus N/m2 1.19 � 1010

Poisson's ratio n 0.13

Density kg/m3 256.25

Water depth m 58.5

Fig. 4. Hinged model and grids used in the hydrodynamic calculation.
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In Fig. 9, the vertical displacement of points P1 and P2 with
respect to wave frequency are given, normalized by the wave
amplitude (A). Satisfactory agreement is observed between the
present approach and three-dimensional hydroelasticity theory
(Fu et al., 2007). There is also a significant difference of re-
sults between flexible structure and rigid structure, which in-
dicates the importance of structural deformation when
calculating the dynamic response of hinged VLFSs.

The force on the connector was not given by Fu et al.
(2007) due to the limitation of their approach. However, the
new method proposed in this paper can tackle the problem (by

solving Eq. (10)). The shear force Fz and Fx at the hinged
point is given in Fig. 10 for both hinged two-module rigid
structure and flexible structure. It is clearly seen that the force
Fx is almost the same for two cases, but the peak value of the
shear force Fz is very different. However, the variation of the
shear force with respect to the wave frequency shows a similar
trend for the rigid and elastic structure.

The structure's bending moment is obtained using Lu's
method (Lu et al., 2016) and the present method, labeled as
“Lu et al., 2016” and “Present” in Fig. 11. The results obtained
by the present method match well with those calculated using

Fig. 7. Schematic plane view of a two-module, interconnected structure.

Fig. 8. Vertical response amplitude of the longitudinal centerline with a hinged connector.
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the approach proposed by Lu et al. (2016) and Fu et al. (2007).
Also significant differences are found for the rigid and flexible
structure. For the present approach, it is convenient to consider
the effects of structural stiffness on the dynamic response of
the hinged multi-module VLFS. The change of structural
stiffness will only affect the stiffness matrix in the hydroelastic
equation of flexible structure (see Eqs. (10) and (15)), which
means that the distribution of moment along the VLFS can be
easily and quickly calculated for different structural stiffness
(for traditional hydroelasticity theory, mode analysis is needed
for every time of the change of structural stiffness). The
bending moment of the hinged rigid body is obtained by
choosing a very large value Young's modulus.

As shown in Table 1, the Young's modulus has been
assumed to be E ¼ 1.19 � 1010 N/m2. The change of the
Young's modulus is from 0.1E to 10E. The hinged structure's

Fig. 9. Vertical response of the model at points P1 and P2.

Fig. 10. Shear force Fz and Fx at the hinged point.

Fig. 11. Bending moment amplitude distributions along the length of the

hinged structure.

Fig. 12. Bending moment for different values of the Young's modulus.
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bending moment is shown in Fig. 12 under the influence of
different values of the Young's modulus. It can be clearly seen
that, for the first module, the bending moment increases with
increasing stiffness. For the second module, the bending
moment first increases and then decreases with increasing
stiffness. The maximum bending moment of the first module
is, however, always greater than that of the second.

4. Conclusions

This paper presents a new method to calculate the
hydroelastic response of hinged VLFSs. A hinged two-module
flexible structure is used to confirm the present approach. For
each module, the hydroelasticity theory proposed by Lu et al.
(2016) is adopted to consider the coupled effects of wave
dynamics and structural deformation. The continuous condi-
tion at the connection position between two adjacent modules
is also satisfied. The results calculated by the present new

method are compared with those obtained using three-
dimensional hydroelasticity theory (Fu et al., 2007), which
shows rather good agreement. For comparison, the hinged
two-module rigid structure is also investigated, and results
show that the elasticity of the structure has a great influence on
the bending moment, as well as the dynamic response of the
flexible structure. As demonstrated by the calculations pre-
sented in this paper, the new method has many applications,
including dealing with complex structures consisting of
different modules (rigid or elastic) and different forms of
connectors.

Appendix.

The stiffness matrix [K]i�j in Eq. (12):
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The size of the symmetric matrix is 12 � 12. The matrix is
affected by the size of each submodule, Young modulus and
Poisson ratio. l is the length of beam element (the dimension
along x axis). b is the dimension along y axis. h is the
dimension along z axis. k is a constant related to b and h. A is
cross-sectional area. E is Young modulus. by is the correction
factor considering shear deformation for the beam element
bending in xoy plane. bz is the correction factor considering
shear deformation for the beam element bending in xoz plane.
Iy is the moment of inertia around the y axis. Iz is the moment
of inertia around the z axis. G is shear modulus.
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