DOI QR코드

DOI QR Code

Study of a vibrating propulsion system for marine vessels: Evaluation of the efficiency for a boat 13 m long

  • Muscia, Roberto (Department of Engineering and Architecture, University of Trieste)
  • Received : 2016.06.09
  • Accepted : 2016.09.26
  • Published : 2018.03.31

Abstract

This paper illustrates recent advancements relative to a non-conventional propulsion system for boats and is based on two previous papers of the author presented at a conference (see Muscia, 2015a,b). The system does not consider propellers and utilizes the vibration generated by two or more pairs of counter rotating masses. The resultant of the centrifugal forces applies an alternate thrust to the hull that oscillates forward and backward along the longitudinal axis of the boat. The different hydrodynamic drag forces that oppose to the oscillation produce a prevalently forward motion of the vessel. The vibration that causes the motion can be suitably defined to maximize the forward displacement and the efficiency propulsion of the system. This result is obtained by using elliptical gears to rotate the counter rotating masses. The computation of the propulsion efficiency is based on a suitable physical mathematical model. Correlations between numerical experiments on models and possible full scale application are discussed. Some remarks in relation to practical applications and critical issues of the propulsive solution are illustrated. The results have been obtained with reference to a CAD model of a real boat already manufactured whose length is approximately equal to 13 m.

Keywords

References

  1. Belibassakis, K.A., Politis, G.K., 2013. Hydrodynamic performance of flapping wings for augmenting ship propulsion in waves. Ocean. Eng. 72, 227-240. https://doi.org/10.1016/j.oceaneng.2013.06.028
  2. Chernousko, F.L., 2002. The optimum rectilinear motion of a two-mass system. Prikl. Mat. Mekh. 66 (1), 3-9.
  3. Chernousko, F.L., 2005. The motion of a body containing a mobile internal mass. Dokl. Akad. Nauk. SSSR 405 (1), 56-60.
  4. Chernousko, F.L., 2006. Analysis and optimization of the motion of a body controlled by means of a movable internal mass. Prikl. Mat. Mekh. 70 (6), 915-941.
  5. Chernousko, F.L., 2008. The optimal periodic motions of a two-mass system in a resistant medium. J. Appl. Math. Mech. 72, 116-125. https://doi.org/10.1016/j.jappmathmech.2008.04.014
  6. Compton, R.H., 1986. Resistance of a systematic series of semiplaning transform stern hulls. Marit. Technol. 23 (4).
  7. Di Ubaldo, F., 2010. General Design of a 13 m Motor - Yacht. Thesis. Dipartimento di Ingegneria navale, del mare e per l'ambiente, Universita di Trieste.
  8. Esfahani, J.A., Karbasian, H.R., Barati, E., 2015. Proposed kinematic model for fish-like swimming with two pitch motions. Ocean. Eng. 104, 319-328. https://doi.org/10.1016/j.oceaneng.2015.05.021
  9. Fang, H., Xu, J., 2012. Dynamics of a three-module vibration-driven system with non-symmetric Coulomb's dry fiction. Multibody Syst. Dyn. 27, 455-485. https://doi.org/10.1007/s11044-012-9304-0
  10. Fang, H., Xu, J., 2011. Dynamics of a mobile system with an internal acceleration-controlled mass in a resistive medium. J. Sound Vib. 330, 4002-4018. https://doi.org/10.1016/j.jsv.2011.03.010
  11. Floc'h, F., Phoemsapthawee, S., Laurens, J.M., Leroux, J.B., 2012. Porpoising foil as a propulsions system. Ocean. Eng. 39, 53-61. https://doi.org/10.1016/j.oceaneng.2011.11.005
  12. Flow Simulation, SolidWorks, 2015. Dassault Systemes.
  13. Guglielmini, L., Blondeaux, P., Vittori, G., 2004. A simple model of propulsive oscillating foils. Ocean. Eng. 31, 883-899. https://doi.org/10.1016/j.oceaneng.2003.08.007
  14. Kowalczyk, L., Urbanek, S., 2003. The geometry and kinematics of a toothed gear of variable motion. Fibres Text. East. Eur. July, Sept. 2003 11 n. 3(42).
  15. Li, H., Furuta, K., Chernousko, F.L., 2005. A pendulum-driven cart via internal force and static friction. In: Proceedings of the International Conference "Physics and Control", Saint Petersburg, Russia, pp. 7-15.
  16. Li, H., Furuta, K., Chernousko, F.L., 2006. Motion generation of the Capsubot using internal force and static friction. In: Proceedings of the 45th IEEE Conference on Decision and Control, San Diego, CA, USA, pp. 6575-6580.
  17. Muscia, R., 2015a. Evaluation of the efficiency of a vibrating propulsion system for marine vessels, Part I: physical mathematical models. In: Proceedings of the 18th International Conference on Ships and Shipping Research, Lecco, Italy, pp. 337-347.
  18. Muscia, R., 2015b. Evaluation of the efficiency of a vibrating propulsion system for marine vessels, Part II: integration of motion equations and performances. In: Proceedings of the 18th International Conference on Ships and Shipping Research, Lecco, Italy, pp. 349-359.
  19. Muscia, R., 2015c. Performance improvement of a vibration driven system for marine vessels. J. Multibody Syst. Dyn. (Springer). http://dx.doi.org/10.1007/s11044-015-9465-8.
  20. Muscia, R., Sciuto, G., 2010. Analytic study of a new conceptual propulsion device for ships. Int. J. Nav. Archit. Ocean Eng. 2 (2), 75-86. https://doi.org/10.2478/IJNAOE-2013-0022
  21. Quondamatteo, F., 2011. Confronto idrodinamico di carene per imbarcazioni da diporto. Dipartimento di Ingegneria navale, del mare e per l'ambiente, Universita di Trieste. Thesis.
  22. Shaw, S.W., 1986. On the dynamic response of a system with dry friction. J. Sound Vib. 108 (2), 305-325. https://doi.org/10.1016/S0022-460X(86)80058-X
  23. Valeri, D., 2015. Modellazione di famiglie di poppe di natanti predisposte per un sistema propulsivo senza elica: prima valutazione della resistenza idrodinamica all'avanzamento e all'arretramento. Thesis in progress. Dipartimento di Ingegneria e Architettura, Universita di Trieste.
  24. Xia, D., Chen, W., Liu, J., Wu, Zhijun, Cao, Y., 2015. The three-dimensional hydrodynamics of thunniform swimming under self-propulsion. Ocean. Eng. 110, 1-14.
  25. Yang, L., Wiercigroch, M., Pavlovskaia, E., Yu, H., 2013. Modelling of a vibro-impact capsule system. Int. J. Mech. Sci. 66, 2-11. https://doi.org/10.1016/j.ijmecsci.2012.09.012