DOI QR코드

DOI QR Code

Immune Enhancement Effect of Asterias amurensis Fatty Acids through NF-κB and MAPK Pathways on RAW 264.7 Cells

  • Monmai, Chaiwat (Department of Marine Food Science and Technology, Gangneung-Wonju National University) ;
  • Go, Seok Hyeon (Department of Marine Food Science and Technology, Gangneung-Wonju National University) ;
  • Shin, Il-shik (Department of Marine Food Science and Technology, Gangneung-Wonju National University) ;
  • You, SangGuan (Department of Marine Food Science and Technology, Gangneung-Wonju National University) ;
  • Lee, Hyungjae (Department of Food Engineering, Dankook University) ;
  • Kang, SeokBeom (Citrus Research Station, National Institute of Horticultural & Herbal Science, RDA) ;
  • Park, Woo Jung (Department of Marine Food Science and Technology, Gangneung-Wonju National University)
  • Received : 2017.09.04
  • Accepted : 2017.11.29
  • Published : 2018.03.28

Abstract

Asterias amurensis is a marine organism that causes damage to the fishing industry worldwide; however, it has been considered a promising source of functional components. The present study aimed to investigate the immune-enhancing effects of fatty acids from three organs of A. amurensis on murine macrophages (RAW 264.7 cells). A. amurensis fatty acids boosted production of immune-associated factors such as nitric oxide (NO) and prostaglandin E2 in RAW 264.7 cells. A. amurensis fatty acids also enhanced the expression of critical immune-associated genes, including iNOS, $TNF-{\alpha}$, $IL-1{\beta}$, and IL-6, as well as COX-2. Western blotting showed that A. amurensis fatty acids stimulated the $NF-{\kappa}B$ and MAPK pathways by phosphorylation of $NF-{\kappa}B$ p-65, p38, ERK1/2, and JNK. A. amurensis fatty acids from different tissues resulted in different levels of $NF-{\kappa}B$ and MAPK phosphorylation in RAW 264.7 cells. The results increase our understanding of how A. amurensis fatty acids boost immunity in a physiological system, as a potential functional material.

Keywords

References

  1. Walls J, Sinclair L, Finlay D. 2016. Nutrient sensing, signal transduction and immune responses. Semin. Immunol. 28: 396-407. https://doi.org/10.1016/j.smim.2016.09.001
  2. Miccadei S, Masella R, Mileo AM, Gessani S. 2016. Omega3 polyunsaturated fatty acids as immunomodulators in colorectal cancer: new potential role in adjuvant therapies. Front. Immunol. 7: 486.
  3. Roche HM. 1999. Unsaturated fatty acids. Proc. Nutr. Soc. 58: 397-401. https://doi.org/10.1017/S002966519900052X
  4. Ford JH. 2010. Saturated fatty acid metabolism is key link between cell division, cancer, and senescence in cellular and whole organism aging. Age (Dordr.) 32: 231-237. https://doi.org/10.1007/s11357-009-9128-x
  5. Volpe JJ, Vagelos PR. 1976. Mechanisms and regulation of biosynthesis of saturated fatty acids. Physiol. Rev. 56: 339-417. https://doi.org/10.1152/physrev.1976.56.2.339
  6. Zock PL, Blom WA, Nettleton JA, Hornstra G. 2016. Progressing insights into the role of dietary fats in the prevention of cardiovascular disease. Curr. Cardiol. Rep. 18: 111. https://doi.org/10.1007/s11886-016-0793-y
  7. Fasano E, Serini S, Cittadini A, Calviello G. 2015. Long-chain n-3 PUFA against breast and prostate cancer: which are the appropriate doses for intervention studies in animals and humans? Crit. Rev. Food Sci. Nutr. 57: 2245-2262.
  8. Zheng JS, Huang T, Yang J, Fu YQ, Li D. 2012. Marine N-3 polyunsaturated fatty acids are inversely associated with risk of type 2 diabetes in Asians: a systematic review and meta-analysis. PLoS One 7: e44525. https://doi.org/10.1371/journal.pone.0044525
  9. Massey KA, Nicolaou A. 2011. Lipidomics of polyunsaturated-fatty-acid-derived oxygenated metabolites. Biochem. Soc. Trans. 39: 1240-1246. https://doi.org/10.1042/BST0391240
  10. Nicolaou A. 2013. Eicosanoids in skin inflammation. Prostaglandins Leukot. Essent. Fatty Acids 88: 131-138. https://doi.org/10.1016/j.plefa.2012.03.009
  11. Wolfe LS. 1982. Eicosanoids: prostaglandins, thromboxanes, leukotrienes, and other derivatives of carbon-20 unsaturated fatty acids. J. Neurochem. 38: 1-14. https://doi.org/10.1111/j.1471-4159.1982.tb10847.x
  12. Calder PC. 2013. Omega-3 polyunsaturated fatty acids and inflammatory processes: nutrition or pharmacology? Br. J. Clin. Pharmacol. 75: 645-662. https://doi.org/10.1111/j.1365-2125.2012.04374.x
  13. Davidson J, Rotondo D, Rizzo MT, Leaver HA. 2012. Therapeutic implications of disorders of cell death signalling: membranes, micro-environment, and eicosanoid and docosanoid metabolism. Br. J. Pharmacol. 166: 1193-1210.
  14. Greene ER, Huang S, Serhan CN, Panigrahy D. 2011. Regulation of inflammation in cancer by eicosanoids. Prostaglandins Other Lipid Mediat. 96: 27-36.
  15. Shah AK, Kinoshita M, Kurihara H, Ohnishi M, Takahashi K. 2008. Glycosylceramides obtain from the starfish Asterias amurensis Lutken. J. Oleo Sci. 57: 477-484. https://doi.org/10.5650/jos.57.477
  16. Dong G, Xu T, Yang B, Lin X, Zhou X, Yang X, et al. 2011 . Chemical constituents and bioactivities of starfish. Chem. Biodivers. 8: 740-791. https://doi.org/10.1002/cbdv.200900344
  17. D'Orazio N, Gammone MA, Gemello E, De Girolamo M, Cusenza S, Riccioni G. 2012. Marine bioactives: pharmacological properties and potential applications against inflammatory diseases. Mar. Drugs 10: 812-833. https://doi.org/10.3390/md10040812
  18. Mayer AM, Hamann MT. 2005. Marine pharmacology in 2001-2002: marine compounds with anthelmintic, antibacterial, anticoagulant, antidiabetic, antifungal, anti-inflammatory, antimalarial, antiplatelet, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems and other miscellaneous mechanisms of action. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 140: 265-286. https://doi.org/10.1016/j.cca.2005.04.004
  19. Higuchi R, Inoue S, Inagaki K, Sakai M, Miyamoto T, Komori T, et al. 2006. Biologically active glycosides from asteroidea, 42. Isolation and structure of a new biologically active ganglioside molecular species from the starfish Asterina pectinifera. Chem. Pharm. Bull. (Tokyo) 54: 287-291. https://doi.org/10.1248/cpb.54.287
  20. Han YH, Ham JH, Lee NJ, Park CH, Shin YH, Lee DU. 2000. Antimutagenic activity of 5alpha-cholest-7-en-3beta-ol, a new component from the starfish Asterina pectinifera. Biol. Pharm. Bull. 23: 1247-1249. https://doi.org/10.1248/bpb.23.1247
  21. Peng Y, Zheng J, Huang R, Wang Y, Xu T, Zhou X, et al. 2010. Polyhydroxy steroids and saponins from China Sea starfish Asterina pectinifera and their biological activities. Chem. Pharm. Bull. (Tokyo) 58: 856-858. https://doi.org/10.1248/cpb.58.856
  22. Hossain Z, Kurihara H, Hosokawa M, Takahashi K. 2006. Docosahexaenoic acid and eicosapentaenoic acid-enriched phosphatidylcholine liposomes enhance the permeability, transportation and uptake of phospholipids in Caco-2 cells. Mol. Cell. Biochem. 285: 155-163. https://doi.org/10.1007/s11010-005-9074-6
  23. Li G, Sinclair AJ, Li D. 2011. Comparison of lipid content and fatty acid composition in the edible meat of wild and cultured freshwater and marine fish and shrimps from China. J. Agric. Food Chem. 59: 1871-1881. https://doi.org/10.1021/jf104154q
  24. Koftayan T, Milano J, D'Armas H, Salazar G. 2011. Lipid and fatty acid profile of Perna viridis, green mussel (Mollusca: Bivalvia) in different areas of the Eastern Venezuela and the West Coast of Trinidad. Rev. Biol. Trop. 59: 171-182.
  25. Garces R, Mancha M. 1993. One-step lipid extraction and fatty acid methyl esters preparation from fresh plant tissues. Anal. Biochem. 211: 139-143.
  26. Park WJ, Kothapalli KS, Lawrence P, Tyburczy C, Brenna JT. 2009. An alternate pathway to long-chain polyunsaturates: the FADS2 gene product delta8-desaturates 20:2n-6 and 20:3n-3. J. Lipid Res. 50: 1195-1202.
  27. Cao RA, Lee Y, You S. 2014. Water soluble sulfated-fucans with immune-enhancing properties from Ecklonia cava. Int. J. Biol. Macromol. 67: 303-311. https://doi.org/10.1016/j.ijbiomac.2014.03.019
  28. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. 1982. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal. Biochem. 126: 131-138. https://doi.org/10.1016/0003-2697(82)90118-X
  29. Narayanan BA, Narayanan NK, Simi B, Reddy BS. 2003. Modulation of inducible nitric oxide synthase and related proinflammatory genes by the omega-3 fatty acid docosahexaenoic acid in human colon cancer cells. Cancer Res. 63: 972-979.
  30. Kang S, Min H. 2012. Ginseng, the 'immunity boost': the effects of Panax ginseng on immune system. J. Ginseng Res. 36: 354-368. https://doi.org/10.5142/jgr.2012.36.4.354
  31. Lechner M, Lirk P, Rieder J. 2005. Inducible nitric oxide synthase (iNOS) in tumor biology: the two sides of the same coin. Semin. Cancer Biol. 15: 277-289. https://doi.org/10.1016/j.semcancer.2005.04.004
  32. Surayot U, Wang J, Lee JH, Kanongnuch C, Peerapornpisal Y, You S. 2015. Characterization and immunomodulatory activities of polysaccharides from Spirogyra neglecta (Hassall) Kutzing. Biosci. Biotechnol. Biochem. 79: 1644-1653. https://doi.org/10.1080/09168451.2015.1043119
  33. Olefsky JM, Glass CK. 2010. Macrophages, inflammation, and insulin resistance. Annu. Rev. Physiol. 72: 219-246. https://doi.org/10.1146/annurev-physiol-021909-135846
  34. Hu SS, Bradshaw HB, Chen JS, Tan B, Walker JM. 2008. Prostaglandin E2 glycerol ester, an endogenous COX-2 metabolite of 2-arachidonoylglycerol, induces hyperalgesia and modulates NFkappaB activity. Br. J. Pharmacol. 153: 1538-1549.
  35. Zhao Y, Liu J, Liu C, Zeng X, Li X, Zhao J. 2016. Anti-inflammatory effects of p-coumaric acid in LPS-stimulated RAW264.7 cells: involvement of $NF-{\kappa}B$ and MAPKs pathways. Med. Chem. 6: 327-330.
  36. Baeuerle PA, Baltimore D. 1996. NF-kappa B: ten years after. Cell 87: 13-20. https://doi.org/10.1016/S0092-8674(00)81318-5
  37. Kim JB, Han AR, Park EY, Kim JY, Cho W, Lee J, et al. 2007. Inhibition of LPS-induced iNOS, COX-2 and cytokines expression by poncirin through the NF-kappaB inactivation in RAW 264.7 macrophage cells. Biol. Pharm. Bull. 30: 2345-2351. https://doi.org/10.1248/bpb.30.2345
  38. Cargnello M, Roux PP. 2011. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol. Mol. Biol. Rev. 75: 50-83. https://doi.org/10.1128/MMBR.00031-10
  39. Li YY, Hsieh LL, Tang RP, Liao SK, Yeh KY. 2009. Interleukin-6 (IL-6) released by macrophages induces IL-6 secretion in the human colon cancer HT-29 cell line. Hum. Immunol. 70: 151-158. https://doi.org/10.1016/j.humimm.2009.01.004
  40. Allam-Ndoul B, Guenard F, Barbier O, Vohl MC. 2016. Effect of n-3 fatty acids on the expression of inflammatory genes in THP-1 macrophages. Lipids Health Dis. 15: 69. https://doi.org/10.1186/s12944-016-0241-4
  41. Yang SC, Sung PJ, Lin CF, Kuo J, Chen CY, Hwang TL. 2014. Anti-inflammatory effects of secondary metabolites of marine Pseudomonas sp. in human neutrophils are through inhibiting P38 MAPK, JNK, and calcium pathways. PLoS One 9: e114761. https://doi.org/10.1371/journal.pone.0114761

Cited by

  1. H 2 S suppresses indoleamine 2, 3-dioxygenase 1 and exhibits immunotherapeutic efficacy in murine hepatocellular carcinoma vol.38, pp.1, 2018, https://doi.org/10.1186/s13046-019-1083-5
  2. Antioxidant and Anti-Inflammatory Effects of White Mulberry (Morus alba L.) Fruits on Lipopolysaccharide-Stimulated RAW 264.7 Macrophages vol.26, pp.4, 2018, https://doi.org/10.3390/molecules26040920