DOI QR코드

DOI QR Code

Flocculation Effect of Alkaline Electrolyzed Water (AEW) on Harvesting of Marine Microalga Tetraselmis sp.

  • Lee, Su-Jin (Jeju International Marine Science Research & Education Center, Korea Institute of Ocean Science & Technology) ;
  • Choi, Woo-Seok (Jeju International Marine Science Research & Education Center, Korea Institute of Ocean Science & Technology) ;
  • Park, Gun-Hoo (Jeju International Marine Science Research & Education Center, Korea Institute of Ocean Science & Technology) ;
  • Kim, Tae-Ho (Jeju International Marine Science Research & Education Center, Korea Institute of Ocean Science & Technology) ;
  • Oh, Chulhong (Jeju International Marine Science Research & Education Center, Korea Institute of Ocean Science & Technology) ;
  • Heo, Soo-Jin (Jeju International Marine Science Research & Education Center, Korea Institute of Ocean Science & Technology) ;
  • Kang, Do-Hyung (Jeju International Marine Science Research & Education Center, Korea Institute of Ocean Science & Technology)
  • Received : 2017.09.19
  • Accepted : 2018.01.03
  • Published : 2018.03.28

Abstract

Microalgae hold promise as a renewable energy source for the production of biofuel, as they can convert light energy into chemical energy through photosynthesis. However, cost-efficient harvest of microalgae remains a major challenge to commercial-scale algal biofuel production. We first investigated the potential of electrolytic water as a flocculant for harvesting Tetraselmis sp. Alkaline electrolyzed water (AEW) is produced at the cathode through water electrolysis. It contains mineral ions such as $Na^+$, $K^+$, $Ca^{2+}$, and $Mg^{2+}$ that can act as flocculants. The flocculation activity with AEW was evaluated via culture density, AEW concentration, medium pH, settling time, and ionic strength analyses. The flocculation efficiency was 88.7% at 20% AEW (pH 8, 10 min) with a biomass concentration of 2 g/l. The initial biomass concentration and medium pH had significant influences on the flocculation activity of AEW. A viability test of flocculated microalgal cells was conducted using Evans blue stain, and the cells appeared intact. Furthermore, the growth rate of Tetraselmis sp. in recycled flocculation medium was similar to the growth rate in fresh F/2 medium. Our results suggested that AEW flocculation could be a very useful and affordable methodology for fresh biomass harvesting with environmentally friendly easy operation in part of the algal biofuel production process.

Keywords

References

  1. Grima EM, Belarbi E-H, Fernandez FA, Medina AR, Chisti Y. 2003. Recovery of microalga biomass and metabolites: process options and economics. Biotechnol. Adv. 20: 491-515. https://doi.org/10.1016/S0734-9750(02)00050-2
  2. Becker E. 2007. Micro-algae as a source of protein. Biotechnol. Adv. 25: 207-210. https://doi.org/10.1016/j.biotechadv.2006.11.002
  3. Chisti Y. 2007. Biodiesel from microalgae. Biotechnol. Adv. 25: 294-306. https://doi.org/10.1016/j.biotechadv.2007.02.001
  4. Uduman N, Qi Y, Danquah MK, Forde GM, Hoadley A. 2010. Dewatering of microalga cultures: a major bottleneck to algae-based fuels. J. Renew. Sustain. Energy 2: 012701. https://doi.org/10.1063/1.3294480
  5. Brennan L, Owende P. 2010. Biofuels from microalgae - a review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustain. Energy Rev. 14: 557-577. https://doi.org/10.1016/j.rser.2009.10.009
  6. Shen Y, Yuan W, Pei Z, Wu Q, Mao E. 2009. Microalgae mass production methods. Trans. ASABE 52: 1275-1287. https://doi.org/10.13031/2013.27771
  7. Vandamme D, Pontes SCV, Goiris K, Foubert I, Pinoy LJJ, Muylaert K. 2011. Evaluation of electro-coagulation-flocculation for harvesting marine and freshwater microalgae. Biotechnol. Bioeng. 108: 2320-2329.
  8. Danquah MK, Ang L, Uduman N, Moheimani N, Forde GM. 2009. Dewatering of microalga culture for biodiesel production: exploring polymer flocculation and tangential flow filtration. J. Chem. Technol. Biotechnol. 84: 1078-1083. https://doi.org/10.1002/jctb.2137
  9. Renault F, Sancey B, Badot P-M, Crini G. 2009. Chitosan for coagulation/flocculation processes - an eco-friendly approach. Eur. Polym. J. 45: 1337-1348.
  10. Papazi A, Makridis P, Divanach P. 2010. Harvesting Chlorella minutissima using cell coagulants. J. Appl. Phycol. 22: 349-355. https://doi.org/10.1007/s10811-009-9465-2
  11. Vandamme D, Foubert I, Meesschaert B, Muylaert K. 2010. Flocculation of microalgae using cationic starch. J. Appl. Phycol. 22: 525-530. https://doi.org/10.1007/s10811-009-9488-8
  12. Bilanovic D, Shelef G, Sukenik A. 1988. Flocculation of microalgae with cationic polymers - effects of medium salinity. Biomass 17: 65-76. https://doi.org/10.1016/0144-4565(88)90071-6
  13. Razack SA, Velayutham V, Thangavelu V. 2014. Medium optimization and in vitro antioxidant activity of exopolysaccharide produced by Bacillus subtilis. Korean J. Chem. Eng. 31: 296-303. https://doi.org/10.1007/s11814-013-0217-2
  14. Sirajunnisa AR, Surendhiran D. 2014. Nanosilver fabrication mediated by exopolysaccharides from Pseudomonas fluorescens and its biological activities. Magnesium 5: 6.
  15. Vandamme D, Foubert I, Muylaert K. 2013. Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends Biotechnol. 31: 233-239. https://doi.org/10.1016/j.tibtech.2012.12.005
  16. Bosma R, van Spronsen WA, Tramper J, Wijffels RH. 2003. Ultrasound, a new separation technique to harvest microalgae. J. Appl. Phycol. 15: 143-153. https://doi.org/10.1023/A:1023807011027
  17. Lee AK, Lewis DM, Ashman PJ. 2013. Harvesting of marine microalgae by electroflocculation: the energetics, plant design, and economics. Appl. Energy 108: 45-53. https://doi.org/10.1016/j.apenergy.2013.03.003
  18. Poelman E, De Pauw N, Jeurissen B. 1997. Potential of electrolytic flocculation for recovery of micro-algae. Resour. Conserv. Recycl. 19: 1-10. https://doi.org/10.1016/S0921-3449(96)01156-1
  19. Shirahata S, Kabayama S, Nakano M, Miura T, Kusumoto K, Gotoh M, et al. 1997. Electrolyzed-reduced water scavenges active oxygen species and protects DNA from oxidative damage. Biochem. Biophys. Res. Commun. 234: 269-274. https://doi.org/10.1006/bbrc.1997.6622
  20. Kim C, Hung Y-C, Brackett RE. 2000. Roles of oxidation-reduction potential in electrolyzed oxidizing and chemically modified water for the inactivation of food-related pathogens. J. Food Prot. 63: 19-24. https://doi.org/10.4315/0362-028X-63.1.19
  21. Huang Y-R, Hung Y-C, Hsu S-Y, Huang Y-W, Hwang D-F. 2008. Application of electrolyzed water in the food industry. Food Control 19: 329-345. https://doi.org/10.1016/j.foodcont.2007.08.012
  22. Guillard RR. 1975. Culture of phytoplankton for feeding marine invertebrates, pp. 29-60. In Smith WL, Chanley MH (eds.). Culture of Marine Invertebrate Animals. Springer, Boston, MA.
  23. Widholm JM. 1972. The use of fluorescein diacetate and phenosafranine for determining viability of cultured plant cells. Stain Technol. 47: 189-194. https://doi.org/10.3109/10520297209116483
  24. Crippen RW, Perrier J. 1974. The use of neutral red and Evans blue for live-dead determinations of marine plankton (with comments on the use of rotenone for inhibition of grazing). Stain Technol. 49: 97-104. https://doi.org/10.3109/10520297409116949
  25. Garzon-Sanabria AJ, Davis RT, Nikolov ZL. 2012. Harvesting Nannochloris oculata by inorganic electrolyte flocculation: effect of initial cell density, ionic strength, coagulant dosage, and media pH. Bioresour. Technol. 118: 418-424. https://doi.org/10.1016/j.biortech.2012.04.057
  26. Lee S-M, Choi H-J. 2015. Harvesting of microalgae species using Mg-sericite flocculant. Bioprocess Biosyst. Eng. 38: 2323-2330.
  27. Ndikubwimana T, Zeng X, Liu Y, Chang J-S, Lu Y. 2014. Harvesting of microalgae Desmodesmus sp. F51 by bioflocculation with bacterial bioflocculant. Algal Res. 6: 186-193. https://doi.org/10.1016/j.algal.2014.09.004
  28. Liu J, Zhu Y, Tao Y, Zhang Y, Li A, Li T, et al. 2013. Freshwater microalgae harvested via flocculation induced by pH decrease. Biotechnol. Biofuels 6: 1. https://doi.org/10.1186/1754-6834-6-1
  29. Wu Z, Zhu Y, Huang W, Zhang C, Li T, Zhang Y, et al. 2012. Evaluation of flocculation induced by pH increase for harvesting microalgae and reuse of flocculated medium. Bioresour. Technol. 110: 496-502. https://doi.org/10.1016/j.biortech.2012.01.101
  30. Sukenik A, Shelef G. 1984. Algal autoflocculation - verification and proposed mechanism. Biotechnol. Bioeng. 26: 142-147.
  31. Zheng H, Gao Z, Yin J, Tang X, Ji X, Huang H. 2012. Harvesting of microalgae by flocculation with poly ($\gamma$-glutamic acid). Bioresour. Technol. 112: 212-220. https://doi.org/10.1016/j.biortech.2012.02.086
  32. Farid MS, Shariati A, Badakhshan A, Anvaripour B. 2013. Using nano-chitosan for harvesting microalga Nannochloropsis sp. Bioresour. Technol. 131: 555-559. https://doi.org/10.1016/j.biortech.2013.01.058
  33. Wu J, Liu J, Lin L, Zhang C, Li A, Zhu Y, et al. 2015. Evaluation of several flocculants for flocculating microalgae. Bioresour. Technol. 197: 495-501. https://doi.org/10.1016/j.biortech.2015.08.094
  34. Hadjoudja S, Deluchat V, Baudu M. 2010. Cell surface characterisation of Microcystis aeruginosa and Chlorella vulgaris. J. Colloid Interface Sci. 342: 293-299. https://doi.org/10.1016/j.jcis.2009.10.078
  35. Gonzalez-Fernandez C, Ballesteros M. 2013. Microalgae autoflocculation: an alternative to high-energy consuming harvesting methods. J. Appl. Phycol. 25: 991-999. https://doi.org/10.1007/s10811-012-9957-3

Cited by

  1. Assessment of the Dynamics of Microbial Community Associated with Tetraselmis suecica Culture under Different LED Lights Using Next-Generation Sequencing vol.29, pp.12, 2018, https://doi.org/10.4014/jmb.1910.10046