DOI QR코드

DOI QR Code

Exploring the Metabolomic Responses of Bacillus licheniformis to Temperature Stress by Gas Chromatography/Mass Spectrometry

  • Dong, Zixing (College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology) ;
  • Chen, Xiaoling (Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology) ;
  • Cai, Ke (Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology) ;
  • Chen, Zhixin (Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology) ;
  • Wang, Hongbin (Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology) ;
  • Jin, Peng (College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology) ;
  • Liu, Xiaoguang (College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology) ;
  • Permaul, Kugenthiren (Department of Biotechnology & Food Technology, Faculty of Applied Sciences, Durban University of Technology) ;
  • Singh, Suren (Department of Biotechnology & Food Technology, Faculty of Applied Sciences, Durban University of Technology) ;
  • Wang, Zhengxiang (College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology)
  • Received : 2017.08.09
  • Accepted : 2017.12.04
  • Published : 2018.03.28

Abstract

Owing to its high protein secretion capacity, simple nutritional requirements, and GRAS (generally regarded as safe) status, Bacillus licheniformis is widely used as a host for the industrial production of enzymes, antibiotics, and peptides. However, as compared with its close relative Bacillus subtilis, little is known about the physiology and stress responses of B. licheniformis. To explore its temperature-stress metabolome, B. licheniformis strains ATCC 14580 and B186, with respective optimal growth temperatures of $42^{\circ}C$ and $50^{\circ}C$, were cultured at $42^{\circ}C$, $50^{\circ}C$, and $60^{\circ}C$ and their corresponding metabolic profiles were determined by gas chromatography/mass spectrometry and multivariate statistical analyses. It was found that with increased growth temperatures, the two B. licheniformis strains displayed elevated cellular levels of proline, glutamate, lysine, pentadecanoic acid, hexadecanoic acid, heptadecanoic acid, and octadecanoic acid, and decreased levels of glutamine and octadecenoic acid. Regulation of amino acid and fatty acid metabolism is likely to be associated with the evolution of protective biochemical mechanisms of B. licheniformis. Our results will help to optimize the industrial use of B. licheniformis and other important Bacillus species.

Keywords

References

  1. Schallmey M, Singh A, Ward OP. 2004. Developments in the use of Bacillus species for industrial production. Can. J. Microbiol. 50: 1-17. https://doi.org/10.1139/w03-076
  2. Schroeter R, Voigt B, Jürgen B, Methling K, Pöther DC, Schäfer H, et al. 2011. The peroxide stress response of Bacillus licheniformis. Proteomics 11: 2851-2866. https://doi.org/10.1002/pmic.201000461
  3. Voigt B, Schroeter R, Schweder T, Jurgen B, Albrecht D, van Dijl JM, et al. 2014. A proteomic view of cell physiology of the industrial workhorse Bacillus licheniformis. J. Biotechnol. 191: 139-149. https://doi.org/10.1016/j.jbiotec.2014.06.004
  4. Blaby IK, Lyons BJ, Wroclawska-Hughes E, Phillips GC, Pyle TP, Chamberlin SG, et al. 2012. Experimental evolution of a facultative thermophile from a mesophilic ancestor. Appl. Environ. Microbiol. 78: 144-155. https://doi.org/10.1128/AEM.05773-11
  5. Sola-Penna M, Meyer-Fernandes JR. 1998. Stabilization against thermal inactivation promoted by sugars on enzyme structure and function: why is trehalose more effective than other sugars? Arch. Biochem. Biophys. 360: 10-14. https://doi.org/10.1006/abbi.1998.0906
  6. Voigt B, Schroeter R, Jürgen B, Albrecht D, Evers S, Bongaerts J, et al. 2013. The response of Bacillus licheniformis to heat and ethanol stress and the role of the SigB regulon. Proteomics 13: 2140-2161. https://doi.org/10.1002/pmic.201200297
  7. Rey MW, Ramaiya P, Nelson BA, Brody-Karpin SD, Zaretsky EJ, Tang M, et al. 2004. Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species. Genome Biol. 5: r77. https://doi.org/10.1186/gb-2004-5-10-r77
  8. Veith B, Herzberg C, Steckel S, Feesche J, Maurer KH, Ehrenreich P, et al. 2004. The complete genome sequence of Bacillus licheniformis DSM13, an organism with great industrial potential. J. Mol. Microbiol. Biotechnol. 7: 204-211. https://doi.org/10.1159/000079829
  9. Schroeter R, Hoffmann T, Voigt B, Meyer H, Bleisteiner M, Muntel J, et al. 2013. Stress responses of the industrial workhorse Bacillus licheniformis to osmotic challenges. PLoS One 8: e80956. https://doi.org/10.1371/journal.pone.0080956
  10. Nielsen AK, Breuner A, Krzystanek M, Andersen JT, Poulsen TA, Olsen PB, et al. 2010. Global transcriptional analysis of Bacillus licheniformis reveals an overlap between heat shock and iron limitation stimulon. J. Mol. Microbiol. Biotechnol. 18: 162-173. https://doi.org/10.1159/000315457
  11. Song H, Wang L, Liu HL, Wu XB, Wang HS, Liu ZH, et al. 2011. Tissue metabolomic fingerprinting reveals metabolic disorders associated with human gastric cancer morbidity. Oncol. Rep. 26: 431-438.
  12. Ye Y, Zhang L, Hao F, Zhang J, Wang Y, Tang H. 2012. Global metabolomic responses of Escherichia coli to heat stress. J. Proteome Res. 11: 2559-2566. https://doi.org/10.1021/pr3000128
  13. Nicholson JK, Connelly J, Lindon JC, Holmes E. 2002. Metabonomics: a platform for studying drug toxicity and gene function. Nat. Rev. Drug Discov. 1: 153-161. https://doi.org/10.1038/nrd728
  14. Denery JR, Nunes AA, Hixon MS, Dickerson TJ, Janda KD. 2010. Metabolomics-based discovery of diagnostic biomarkers for onchocerciasis. PLoS Negl. Trop. Dis. 4: e834. https://doi.org/10.1371/journal.pntd.0000834
  15. Putri SP, Yamamoto S, Tsugawa H, Fukusaki E. 2013. Current metabolomics: technological advances. J. Biosci. Bioeng. 116: 9-16.
  16. Wang H, Chen Z, Yang J, Liu Y, Lu F. 2015. Optimization of sample preparation for the metabolomics of Bacillus licheniformis by GCMS, pp. 579-588. In Zhang T-C, Nakajima M (eds.). Advances in Applied Biotechnology. Proceedings of the 2nd International Conference on Applied Biotechnology (ICAB 2014), Vol. I. Springer, Berlin-Heidelberg.
  17. Niu D, Zuo Z, Shi GY, Wang ZX. 2009. High yield recombinant thermostable $\alpha$-amylase production using an improved Bacillus licheniformis system. Microb. Cell Fact. 8: 611-631.
  18. Dong Z, Chen Z, Wang H, Tian K, Jin P, Liu X, et al. 2017. Tandem mass tag-based quantitative proteomics analyses reveal the response of Bacillus licheniformis to high growth temperatures. Ann. Microbiol. 67: 501-510. https://doi.org/10.1007/s13213-017-1279-x
  19. Stulke J, Hanschke R, Hecker M. 1993. Temporal activation of $\beta$-glucanase synthesis in Bacillus subtilis is mediated by the GTP pool. Microbiology 139: 2041-2045.
  20. Halket JM, Waterman D, Przyborowska AM, Patel RK, Fraser PD, Bramley PM. 2005. Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS. J. Exp. Bot. 56: 219-243. https://doi.org/10.1093/jxb/eri069
  21. Denkert C, Budczies J, Kind T, Weichert W, Tablack P, Sehouli J, et al. 2006. Mass spectrometry-based metabolic profiling reveals different metabolite patterns in invasive ovarian carcinomas and ovarian borderline tumors. Cancer Res. 66: 10795-10804. https://doi.org/10.1158/0008-5472.CAN-06-0755
  22. Bundy JG, Willey TL, Castell RS, Ellar DJ, Brindle KM. 2005. Discrimination of pathogenic clinical isolates and laboratory strains of Bacillus cereus by NMR-based metabolomic profiling. FEMS Microbiol. Lett. 242: 127-136. https://doi.org/10.1016/j.femsle.2004.10.048
  23. Bijlsma S, Bobeldijk I, Verheij ER, Ramaker R, Kochhar S, Macdonald IA, et al. 2006. Large-scale human metabolomics studies: a strategy for data (pre-) processing and validation. Anal. Chem. 78: 567-574. https://doi.org/10.1021/ac051495j
  24. Calik P, Calik G, Ozdamar TH. 2001. Bioprocess development for serine alkaline protease production: a review. Rev. Chem. Eng. 17: 1-62.
  25. Hoffmann T, Bremer E. 2011. Protection of Bacillus subtilis against cold stress via compatible-solute acquisition. J. Bacteriol. 193: 1552-1562. https://doi.org/10.1128/JB.01319-10
  26. Neelon K, Schreier HJ, Meekins H, Robinson PM, Roberts MF. 2005. Compatible solute effects on thermostability of glutamine synthetase and aspartate transcarbamoylase from Methanococcus jannaschii. Biochim. Biophys. Acta 1753: 164-173. https://doi.org/10.1016/j.bbapap.2005.08.009
  27. Bursy J, Pierik AJ, Pica N, Bremer E. 2007. Osmotically induced synthesis of the compatible solute hydroxyectoine is mediated by an evolutionarily conserved ectoine hydroxylase. J. Biol. Chem. 282: 31147-31155. https://doi.org/10.1074/jbc.M704023200
  28. Zaprasis A, Hoffmann T, Wunsche G, Florez LA, Stulke J, Bremer E. 2014. Mutational activation of the RocR activator and of a cryptic rocDEF promoter bypass loss of the initial steps of proline biosynthesis in Bacillus subtilis. Environ. Microbiol. 16: 701-717. https://doi.org/10.1111/1462-2920.12193
  29. Diamant S, Eliahu N, Rosenthal D, Goloubinoff P. 2001. Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses. J. Biol. Chem. 276: 39586-39591. https://doi.org/10.1074/jbc.M103081200
  30. Galili G, Tang G, Zhu X, Gakiere B. 2001. Lysine catabolism: a stress and development super-regulated metabolic pathway. Curr. Opin. Plant Biol. 4: 261-266. https://doi.org/10.1016/S1369-5266(00)00170-9
  31. Suutari M, Laakso S. 1994. Microbial fatty acids and thermal adaptation. Crit. Rev. Microbiol. 20: 285-328. https://doi.org/10.3109/10408419409113560
  32. Los DA, Mironov KS, Allakhverdiev SI. 2013. Regulatory role of membrane fluidity in gene expression and physiological functions. Photosynth. Res. 116: 489-509. https://doi.org/10.1007/s11120-013-9823-4
  33. Mansilla MC, de Mendoza D. 2005. The Bacillus subtilis desaturase: a model to understand phospholipid modification and temperature sensing. Arch. Microbiol. 183: 229-235. https://doi.org/10.1007/s00203-005-0759-8
  34. Sikorski J, Brambilla E, Kroppenstedt RM, Tindall BJ. 2008. The temperature-adaptive fatty acid content in Bacillus simplex strains from 'Evolution Canyon', Israel. Microbiology 154: 2416-2426. https://doi.org/10.1099/mic.0.2007/016105-0