DOI QR코드

DOI QR Code

Construction of Luminescence- and Fluorescence-Tagged Burkholderia pseudomallei for Pathogen Tracking in a Mouse Model

  • Shin, Yong-Woo (Division of High-Risk Pathogens, Center for Laboratory Control of Infectious Diseases, Korea Centers for Disease Control and Prevention) ;
  • Park, Deok Bum (Division of High-Risk Pathogens, Center for Laboratory Control of Infectious Diseases, Korea Centers for Disease Control and Prevention) ;
  • Choi, Myung-Min (Division of High-Risk Pathogens, Center for Laboratory Control of Infectious Diseases, Korea Centers for Disease Control and Prevention) ;
  • Chun, Jeong-Hoon (Division of High-Risk Pathogens, Center for Laboratory Control of Infectious Diseases, Korea Centers for Disease Control and Prevention) ;
  • Seong, Baik-Lin (Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University) ;
  • Rhie, Gi-Eun (Division of High-Risk Pathogens, Center for Laboratory Control of Infectious Diseases, Korea Centers for Disease Control and Prevention)
  • Received : 2017.10.16
  • Accepted : 2017.12.04
  • Published : 2018.03.28

Abstract

Molecular imaging is a powerful method for tracking various infectious disease-causing pathogens in host organisms. Currently, a dual molecular imaging method that can provide temporal and spatial information on infected hosts at the organism, organ, tissue, and cellular levels simultaneously has not been reported for Burkholderia pseudomallei, a high-risk pathogen that causes melioidosis. In this study, we have established an experimental method that provides spatiotemporal information on infected hosts using luminescent and fluorescent dual-labeled B. pseudomallei. Using this method, we visualized B. pseudomallei infection at the organism, organ, and tissue levels in a BALB/c mouse model by detecting its luminescence and fluorescence. The infection of B. pseudomallei at the cellular level was also visualized by its emitted fluorescence in infected macrophage cells. This method could be an extremely useful and applicable tool to study the pathogenesis of B. pseudomallei-related infectious diseases.

Keywords

References

  1. Sanz P, Teel LD, Alem F, Carvalho HM, Darnell SC, O'Brien AD. 2008. Detection of Bacillus anthracis spore germination in vivo by bioluminescence imaging. Infect. Immun. 76: 1036-1047. https://doi.org/10.1128/IAI.00985-07
  2. Massey S, Johnston K, Mott TM, Judy BM, Kvitko BH, Schweizer HP, et al. 2011. In vivo bioluminescence imaging of Burkholderia mallei respiratory infection and treatment in the mouse model. Front. Microbiol. 2: 174.
  3. Warawa JM, Long D, Rosenke R, Gardner D, Gherardini FC. 2011. Bioluminescent diagnostic imaging to characterize altered respiratory tract colonization by the Burkholderia pseudomallei capsule mutant. Front. Microbiol. 2: 133.
  4. Nham T, Filali S, Danne C, Derbise A, Carniel E. 2012. Imaging of bubonic plague dynamics by in vivo tracking of bioluminescent Yersinia pestis. PLoS One 7: e34714. https://doi.org/10.1371/journal.pone.0034714
  5. Revelli DA, Boylan JA, Gherardini FC. 2012. A non-invasive intratracheal inoculation method for the study of pulmonary melioidosis. Front. Cell. Infect. Microbiol. 2: 164.
  6. Louie M, Read S, Simor AE, Holland J, Louie L, Ziebell K, et al. 1998. Application of multiplex PCR for detection of non-O157 verocytotoxin-producing Escherichia coli in bloody stools: identification of serogroups O26 and O111. J. Clin. Microbiol. 36: 3375-3377.
  7. Rajwa B, Dundar MM, Akova F, Bettasso A, Patsekin V, Hirleman ED, et al. 2010. Discovering the unknown: detection of emerging pathogens using a label-free light-scattering system. Cytometry A 77: 1103-1112.
  8. Shachaf CM, Kopelman AM, Arvanitis C, Karlsson A, Beer S, Mandl S, et al. 2004. MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature 431: 1112-1117. https://doi.org/10.1038/nature03043
  9. Burton JB, Johnson M, Sato M, Koh SB, Mulholland DJ, Stout D, et al. 2008. Adenovirus-mediated gene expression imaging to directly detect sentinel lymph node metastasis of prostate cancer. Nat. Med. 14: 882-888. https://doi.org/10.1038/nm.1727
  10. Nasu M, Carbone M, Gaudino G, Ly BH, Bertino P, Shimizu D, et al. 2011. Ranpirnase interferes with NF-kappaB pathway and MMP9 activity, inhibiting malignant mesothelioma cell invasiveness and xenograft growth. Genes Cancer 2: 576-584.
  11. Allwood EM, Devenish RJ, Prescott M, Adler B, Boyce JD. 2011. Strategies for intracellular survival of Burkholderia pseudomallei. Front. Microbiol. 2: 170.
  12. St John JA, Walkden H, Nazareth L, Beagley KW, Ulett GC, Batzloff MR, et al. 2016. Burkholderia pseudomallei rapidly infects the brain stem and spinal cord via the trigeminal nerve after intranasal inoculation. Infect. Immun. 84: 2681-2688. https://doi.org/10.1128/IAI.00361-16
  13. Cheng AC, Currie BJ. 2005. Melioidosis: epidemiology, pathophysiology, and management. Clin. Microbiol. Rev. 18: 383-416. https://doi.org/10.1128/CMR.18.2.383-416.2005
  14. Wiersinga WJ, Currie BJ, Peacock SJ. 2012. Melioidosis. N. Engl. J. Med. 367: 1035-1044. https://doi.org/10.1056/NEJMra1204699
  15. Rotz LD, Khan AS, Lillibridge SR, Ostroff SM, Hughes JM. 2002. Public health assessment of potential biological terrorism agents. Emerg. Infect. Dis. 8: 225-230. https://doi.org/10.3201/eid0802.010164
  16. Limmathurotsakul D, Peacock SJ. 2011. Melioidosis: a clinical overview. Br. Med. Bull. 99: 125-139.
  17. Patel N, Conejero L, De Reynal M, Easton A, Bancroft GJ, Titball RW. 2011. Development of vaccines against Burkholderia pseudomallei. Front. Microbiol. 2: 198.
  18. Shin YW, Cho MH, Chun JH, Kim CM, Oh HB, Rhie GE, et al. 2011. The laboratory diagnosis of melioidosis in a Korean patient. J. Bacteriol. Virol. 41: 19-25. https://doi.org/10.4167/jbv.2011.41.1.19
  19. Abd H, Johansson T, Golovliov I, Sandström G, Forsman M. 2003. Survival and growth of Francisella tularensis in Acanthamoeba castellanii. Appl. Environ. Microbiol. 69: 600-606. https://doi.org/10.1128/AEM.69.1.600-606.2003