DOI QR코드

DOI QR Code

Processing and Properties of 30 wt% β-Tricalcium Phosphate/Al2O3 Composites

30 wt% β-Tricalcium Phosphate/Al2O3 복합재료의 제조 및 특성

  • Jeong, Heecheol (School of Materials Science and Engineering, Andong National University) ;
  • Ha, Jung-Soo (School of Materials Science and Engineering, Andong National University)
  • 정희철 (안동대학교 신소재공학부) ;
  • 하정수 (안동대학교 신소재공학부)
  • Received : 2018.01.26
  • Accepted : 2018.02.06
  • Published : 2018.03.27

Abstract

${\beta}-Tricalcium$ phosphate (TCP) was added to $Al_2O_3$ to make a biomaterial with good mechanical properties. Using a TCP powder synthesized by a polymer complexation method, $Al_2O_3$ composites containing 30 wt% TCP were fabricated and characterized for densification, phase, microstructure, strength, and fracture toughness. With optimizing the powder preparation conditions, a high densification of 97 % was obtained by sintering at $1350^{\circ}C$ for 2 h. No reaction between the two components occurred and there was no transition to ${\alpha}-TCP$. TCP grains with a size of $2-4{\mu}m$ were well surrounded by $Al_2O_3$ grains with a size of $1{\mu}m$ or less. Strength 61(Brazilian) or 187(3-p MOR) MPa, and fracture toughness 1.7 (notched beam) or 2.5 (indentation) $MPa{\cdot}m^{1/2}$ were obtained, which are large improvements over the strength of $TCP/Al_2O_3$ composites and toughness of TCP and hydroxyapatite in previous studies.

Keywords

References

  1. B. Viswanath and N. Ravishankar, Scr. Mater., 55, 863 (2006). https://doi.org/10.1016/j.scriptamat.2006.07.049
  2. Y. X. Pang, X. Bao, and L. Weng, J. Mater. Sci., 39, 6311 (2004). https://doi.org/10.1023/B:JMSC.0000043601.46284.a0
  3. E. Adolfsson, P. Alberius-Henning, and L. Hermansson, J. Am. Ceram. Soc., 83, 2798 (2000).
  4. R. Ramachanda Rao and T. S. Kannan, Mater. Sci. Eng. C, 20, 187 (2002). https://doi.org/10.1016/S0928-4931(02)00031-0
  5. V. V. Silva, F. S. Lamerias, and R. Z. Dominguez, Compos. Sci. Technol., 61, 301 (2001). https://doi.org/10.1016/S0266-3538(00)00222-0
  6. S. Nath, K. Biswas, K. Wang, R. K. Bordia, and B. Basu, J. Am. Ceram. Soc., 93, 1639 (2010).
  7. Z. Shen, E. Adolfsson, M. Nygren, L. Gao, H. Kawaoka, and K. Niihara, Adv. Mater., 13, 214 (2001). https://doi.org/10.1002/1521-4095(200102)13:3<214::AID-ADMA214>3.0.CO;2-5
  8. Y-M. Kong, C-J. Bae, S-H. Lee, H-W. Kim, and H-E. Kim, Biomaterials, 26, 509 (2005). https://doi.org/10.1016/j.biomaterials.2004.02.061
  9. S. Sakka, F. B. Ayed, and J. Bouaziz, IOP Conference Series: Mater. Sci. Eng., 28, 012028 (2012).
  10. S. Sakka, J. Bouaziz, and F. B. Ayed, in Advances in Biomaterials Science and Biomedical Applications. ed. R. Pignatello (INTECH, 2013) p.23
  11. S-J. Lee, S-I. Ko, M-H. Lee, and N-S. Oh, J. Ceram. Proc. Res., 8, 281 (2007).
  12. Jung-Soo Ha, J. Korean Ceram. Soc., 52, 374 (2015). https://doi.org/10.4191/kcers.2015.52.5.374
  13. H-S. Ryu, H-J. Youn, K-S. Hong, B-S. Chang, C-K. Lee, and S-S. Chung, Biomaterials, 23, 909 (2002). https://doi.org/10.1016/S0142-9612(01)00201-0
  14. Y-K. Jun, S-H. Hong, and Y-M. Kong, J. Am. Ceram. Soc., 89, 2295 (2006).
  15. X. Zhang, F. Jiang, and T. Groth, J. Mater. Sci.: Mater. Med., 19, 3063 (2008). https://doi.org/10.1007/s10856-008-3442-1
  16. R. Borges, S. Ribeiro, J. Marchi, H. N. Yoshimura, Mater. Sci. For., 798, 454 (2014).
  17. Z. Xihua, L. Changxia, L. Musen, B. Yunqiang, S. Junlong, Ceram. Int., 35, 1969 (2009). https://doi.org/10.1016/j.ceramint.2008.10.027