DOI QR코드

DOI QR Code

Synthesis of Nitrogen Doped Protein Based Carbon as Pt Catalysts Supports for Oxygen Reduction Reaction

산화환원반응용 백금 촉매 지지체를 위한 질소 도핑된 단백질계 탄소의 제조

  • Lee, Young-geun (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • An, Geon-hyeong (Program of Materials Science & Engineering, Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology) ;
  • Ahn, Hyo-Jin (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 이영근 (서울과학기술대학교 신소재공학과) ;
  • 안건형 (서울과학기술대학교 의공학 바이오소재 융합 협동과정 신소재공학 프로그램) ;
  • 안효진 (서울과학기술대학교 신소재공학과)
  • Received : 2018.01.26
  • Accepted : 2018.02.26
  • Published : 2018.03.27

Abstract

Nitrogen (N)-doped protein-based carbon as platinum (Pt) catalyst supports from tofu for oxygen reduction reactions are synthesized using a carbonization and reduction method. We successfully prepare 5 wt% Pt@N-doped protein-based carbon, 10 wt% Pt@N-doped protein-based carbon, and 20 wt% Pt@N-doped protein-based carbon. The morphology and structure of the samples are characterized by field emission scanning electron microscopy and transmission electron micro scopy, and crystllinities and chemical bonding are identified using X-ray diffraction and X-ray photoelectron spectroscopy. The oxygen reduction reaction are measured using a linear sweep voltammogram and cyclic voltammetry. Among the samples, 10 wt% Pt@N-doped protein-based carbon exhibits exellent electrochemical performance with a high onset potential of 0.62 V, a high $E_{1/2}$ of 0.55 V, and a low ${\Delta}E_{1/2}=0.32mV$. Specifically, as compared to the commercial Pt/C, the 10 wt% Pt@N-doped protein-based carbon had a similar oxygen reduction reaction perfomance and improved electrochemical stability.

Keywords

References

  1. J. Greeley, I. E. L. Stephens, A. S. Bondarenko, T. P. Johansson, H. A. Hansen, T. F. Jaramillo, J. Rossmeisl, I. Chorkendorff and J. K. Norskov, Nat. Chem., 1, 552 (2009). https://doi.org/10.1038/nchem.367
  2. M. Li, Z. Zhao, T. Cheng, A. Fortunelli, C. Y. Chen, R. Yu, Q. Zhang, L. Gu, B. Merinov, Z. Lin, E. Zhu, T. Yu, Q. Jia, J. Guo, L. Zhang, W. A. Goddard III, Y. Huang and X. Duan, Science, 354, 1414 (2016). https://doi.org/10.1126/science.aaf9050
  3. G. H. An, E. H. Lee and H. J. Ahn, J. Alloy. Compd., 682, 746 (2016). https://doi.org/10.1016/j.jallcom.2016.05.033
  4. S. Y. Yoo, S. M. Kang, J. N. Lee, C. K. Rhee and H. J. Ryu, J. Mater. Res., 21, 180 (2011).
  5. D. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo and J. Nakamura, Science, 351, 361 (2016). https://doi.org/10.1126/science.aad0832
  6. S. Yang, Z. Wang, Z. Cao, X. Mao, M. Shi, Y. Li, R. Zhang and Y. Yin, J. Alloy. Compd., 721, 482 (2017). https://doi.org/10.1016/j.jallcom.2017.05.221
  7. G. H. An, E. H. Lee and H. J. Ahn, J. Korean Powder Metall. Inst., 22, 350 (2015). https://doi.org/10.4150/KPMI.2015.22.5.350
  8. S. Sharma and B. G. Pollet, J. Power Sources, 208, 96 (2012). https://doi.org/10.1016/j.jpowsour.2012.02.011
  9. J. Chang, L. Feng, C. Liu, W. Xing and X. Hu, Energy Environ. Sci., 7, 1628 (2014). https://doi.org/10.1039/c4ee00100a
  10. D. Y. Sin, G. H. An and H. J. Ahn, J. Mater. Res., 25, 113 (2015).
  11. H. L. An, G. H. Ahn and H. J. Ahn, J. Mater. Res., 26, 250 (2016).
  12. D. H. Oh, B. R. Koo, Y. J. Lee, H. L. An and H. J. Ahn, J. Mater. Res., 26, 649 (2016).
  13. Y. J. Lee, G. H. An and H. J. Ahn, J. Mater. Res., 24, 37 (2014).
  14. G. H. An and H. J. Ahn, J. Korean Powder Metall. Inst., 24, 96 (2017).
  15. D. Y. Sin, G. H. An and H. J. Ahn, J. Nanosci. Nanotechno., 16, 10535 (2016). https://doi.org/10.1166/jnn.2016.13190
  16. H. L. An, G. H. An and H. J. Ahn, J. Alloy. Compd., 645, 317 (2015). https://doi.org/10.1016/j.jallcom.2015.05.105
  17. G. S. Hwang and R. Y. Lee, J. Mater. Res., 21, 138 (2011).
  18. G. H. An, D. Y. Lee and H. J. Ahn, ACS Appl. Mater. Interfaces, 9, 12478 (2017). https://doi.org/10.1021/acsami.7b01286
  19. Y. G. Lee, G. H. An and H. J. Ahn, Korean J. Mater. Res., 27, 192 (2017).
  20. G. H. An, B. R. Koo and H. J. Ahn, Phys. Chem. Chem. Phys., 18, 6587 (2016). https://doi.org/10.1039/C6CP00035E
  21. D. Y. Sin, I. K. Park and H. J. Ahn, RSC Adv., 6, 58823 (2016). https://doi.org/10.1039/C6RA06782D
  22. D. Y. Sin, G. H. An and H. J. Ahn, J. Korean Powder Metall. Inst., 22, 350 (2015).
  23. H. L. An and H. J. Ahn, J. Electroanal. Chem., 744, 32 (2016).
  24. T. Zhou, H. Wang, S. Ji, V. Linkov and R. Wang, J. Power Sources, 248, 427 (2014). https://doi.org/10.1016/j.jpowsour.2013.09.108
  25. G. H. An, D. Y. Lee and H. J. Ahn, J. Alloy. Compd., 722, 60 (2017). https://doi.org/10.1016/j.jallcom.2017.06.067
  26. D. Y. Lee, G. H. An, H. J. Ahn, J. Ind. Eng. Chem., 52, 121 (2017). https://doi.org/10.1016/j.jiec.2017.03.032
  27. L. Shang, H. Yu, X. Huang, T. Bian, R. Shi, Y. Zhao, G. I. N. Waterhouse, L. Wu, C. Tung and T. Zhng, Adv. Mater., 28, 1668 (2016).
  28. Y. J. Lee, G. H. An and H. J. Ahn, J. Nanosci. Nanotechno., 15, 1 (2015). https://doi.org/10.1166/jnn.2015.9731
  29. G. H. An, E. H. Lee and H. J. Ahn, Phys. Chem. Chem. Phys., 18, 14859 (2016).
  30. D. Y. Sin, G. H. An and H. J. Ahn, J. Nanosci. Nanotechno., 17, 8180 (2017). https://doi.org/10.1166/jnn.2017.15087
  31. G. H. An, D. Y. Lee, Y. J. Lee and H. J. Ahn, ACS Appl. Mater. Interfaces, 8, 30264 (2016). https://doi.org/10.1021/acsami.6b10868
  32. G. H. An, D. Y. Lee and H. Y. Ahn, ACS Appl. Mater. Interfaces, 8, 19466 (2016). https://doi.org/10.1021/acsami.6b05307
  33. G. H. An, T. K. Lee and H. J. Ahn, J. Korean Powder Metall. Inst., 22, 367 (2015).
  34. G. H. An and H. J. Ahn, J. Alloy. Compd., 710, 274 (2017). https://doi.org/10.1016/j.jallcom.2017.03.273
  35. H. L. An, G. H. Ahn and H. J. Ahn, J. Ceram. Process Res., 16, 208 (2015).
  36. S. Chen, J. Bi, Y. Zhao, L. Yang, C. Zhang, Y. Ma, Q. Wu, X. Wang and Z. Hu, Adv. Mater., 24, 5593 (2012).
  37. L. Lai, J. R. Potts, L. Wang, C. K. Poh, C. Tang, H. Gong, Z. Shen, J. Lin and S. Ruoff, Energy Environ. Sci., 5, 7936 (2012). https://doi.org/10.1039/c2ee21802j