DOI QR코드

DOI QR Code

하수슬러지 소각재로부터 Ca-P 형태의 인 회수

Recovery of Calcium Phosphate from Sewage Sludge Ash

  • 정진모 (세명대학교 바이오환경공학과) ;
  • 윤석표 (세명대학교 바이오환경공학과)
  • Jung, Jinmo (Department of Biological and Environmental Engineering, Semyung University) ;
  • Yoon, Seok-Pyo (Department of Biological and Environmental Engineering, Semyung University)
  • 투고 : 2018.02.05
  • 심사 : 2018.03.05
  • 발행 : 2018.03.30

초록

본 연구에서는 하수슬러지 소각재에서 인을 회수하기 위한 최적 추출 조건을 조사하였다. 이를 위해 순환골재 잔재물 내에 존재하는 칼슘 성분을 이용하여 Ca-P 형태로 최적의 인 회수 조건을 결정하기 위한 실험을 진행하였다. 하수슬러지 소각재의 인 함량은 5 %로 확인되었다. $H_2SO_4$을 추출액으로 사용하였을 때, 1 N $H_2SO_4$의 농도와 L/S비 10, 그리고 추출시간 30분이 최적의 추출조건으로 조사되었다. 최적의 추출 조건을 이용하여 인을 추출한 다음 양이온교환수지 1 ~ 20 g 범위를 사용하여 인과 함께 용출된 중금속을 제거하였는데, 양이온교환수지 20 g에서 Fe 71.3 %, Cu 82.4 %, Zn 79.9 %, Cr 15 %가 제거되었다. 그 후 소각재 인 추출액과 순환골재 잔재물에서 얻은 칼슘 추출액의 혼합비율을 1:1, 1:5, 1:10으로 변화를 주었다. 1:5 혼합액에 5 N NaOH를 주입하여 pH를 2, 4, 8, 12로 조절한 후 인을 Ca-P 형태의 침전물로 회수하는 실험을 진행하였는데, 인이 Ca-P 형태로 침전되는 최적 pH는 8로 도출되었다. 순환골재 잔재물을 사용하였을 경우, 회수되는 침전물의 무게는 증가하였지만, 폐수 발생량이 증가하는 문제가 발생하였다. 따라서 순환골재 잔재물을 이용하는 것은 경제성이 낮다고 판단되었다.

In this study, optimum extraction conditions for phosphorus recovery from sewage sludge ash(SSA) were investigated. For this purpose, an experiment was conducted to determine optimal recovery conditions for Ca-P type phosphorus by using calcium component in the recycled aggregate residue. The phosphorus content of sewage sludge ash was confirmed to be 5.0 %. When $H_2SO_4$ was used as an extract, concentration of 1 N $H_2SO_4$, L/S ratio of 10, and extraction time of 30 min were found to be the optimal extraction conditions. Phosphorus was extracted by using optimal extraction conditions, and then the heavy metals eluted with phosphorus were removed using 1~20 g of cation exchange resin. In 20 g of cation exchange resin, Fe 71.3%, Cu 82.4%, Zn 79.9%, and Cr 15% were removed. After that, the mixing ratio of the calcium extract obtained from the recycled aggregate residue (RAR) was changed to 1:1, 1:5, 1:10. The pH of the SSA to RAR mixture was adjusted to 2, 4, 8 and 12 by the addition of 5 N NaOH to the mixture of 1:5, and the phosphorus was recovered as Ca-P type precipitate. The optimum pH was 8. When recycled aggregate residues were used, the weight of calcium phosphate increased, but the amount of wastewater generated also increased. Therefore, it was concluded that the use of recycled aggregate residue was not economically feasible.

키워드

참고문헌

  1. 2015 Sewage Statistics, Korea Ministry of Environment, (2016).
  2. Driver, J., Lijmbach, D. and Steen, I., "Why recovery phosphorus for recycling, and How?", Environmental Technology, 20(7), pp. 652-662. (1999).
  3. Liu, Y., Chen, J., Mol, A. P. J. and Ayres, R. U., "Comparative analysis of phosphorus use within national and local economies in China", Resources, Conservation and Recycling, 51(2), pp. 454-474. (2007). https://doi.org/10.1016/j.resconrec.2006.10.012
  4. Shu, L., Schneider, P., Jegateesan, V. and Johnson, J., "An economic evaluation of phosphorus recovery as struvite from digester supernatant", Bioresource Technology, 37(17), pp. 2211-2216. (2006).
  5. Schiper, W. J., Klapwijk, A., Potjer, B., Rulkens, W. H., Temmink, B. G., Kiestra, F. D. G. and Lijmbach, A. C. M., "Phosphate recycling in the phosphorus industry", Environmental Technology, 22, pp. 1337-1345. (2001). https://doi.org/10.1080/09593330.2001.9619173
  6. Franz, M., "Phosphate fertilizer from sewage sludge ash (SSA)", Waste Management, 28, pp. 1809-1818. (2008). https://doi.org/10.1016/j.wasman.2007.08.011
  7. Anderson, M., "Encouraging prospects for recycling incinerated sewage sludge ash(ISSA) into clay-based building products", Journal of Chemical Technology and Biotechnology, 77, pp. 352-360. (2002). https://doi.org/10.1002/jctb.586
  8. Herzel, H., Kruger, O., Hermann, L. and Adam, C., "Sewage sludge ash-A promising secondary phosphorus source for fertilizer production", Science of the Total Environment, 542, pp. 1136-1143. (2016). https://doi.org/10.1016/j.scitotenv.2015.08.059
  9. Donatello, S., Tong, D. and Cheeseman, C. R., "Production of technical grade phosphoric acid from incinerator sewage sludge ash (ISSA)", Waste Management, 30, pp. 1634-1642. (2010). https://doi.org/10.1016/j.wasman.2010.04.009
  10. Xu, H., He, P., Gu, W., Wang, G. and Shao, L., "Recovery of phosphorus as struvite from sewage sludge ash", Journal of Environmental Sciences, 24(8), pp. 1533-1538. (2013).
  11. Lee, D. M., Optimal leaching conditions for phosphorus recovery from incinerated sewage sludge ash, Kumoh National Institute of Technology, M.S. Thesis, (2014).
  12. Baek, K. M., Efficient separation of phosphorus from acid leaching solution incinerated sewage sludge ash, Kumoh National Institute of Technology, M.S. Thesis, (2013).
  13. Battsooj, M., Characteristics of phosphorus recovery from sewage sludge ash by sequential acid/alkali elution, Hallym University, M.S. Thesis, (2013).
  14. Choi, W. J., Park, K. M., Yoon, B. G., Kim, M. C. and Oh, K. J., "Recovery of resource from sewage sludge by a struvite-forming method", Journal of Korean Society of Environmental Engineers, 31(7), pp. 557-564. (2009).
  15. Choo, Y. D., Kim, K. Y., Ryu, H. D. and Lee, S. I., "Treatment of N, P of auto-thermal thermophilic aerobic digestion filtrate with struvite crystallization", Journal of Korean Society of Environmental Engineers, 33(11), pp. 783-789. (2011). https://doi.org/10.4491/KSEE.2011.33.11.783
  16. Lee, D. M., Song, Y. H., Baek, K. M. and Jeong, Y. K., "Precipitation and separation properties of the phosphorus extracted from incinerated sewage sludge ash by sulfuric acid", J. of Korea Society of Waste Management, 31(2), pp. 211-217. (2014). https://doi.org/10.9786/kswm.2014.31.2.211
  17. 2015 National Status of Solid Waste Generation and Treatment, Ministry of Environment, (2016).
  18. Ministry of Environment, Solid Waste Process Test Standard, (2017).
  19. Ministry of Environment, Soil Pollution Process Test Standard, (2017).
  20. Ministry of Environment, Water Pollution Process Test Standard, (2014).
  21. Lim, B. H., A study on phosphorus leaching from sewage sludge ash, Hallym University, M.S. Thesis, (2016).
  22. Lee, P. K., Kang. M. J., Choi, S. H. and Shin, S. C., "Chemical speciation and potential mobility of heavy metals in tailings and contaminated soils", Economic and Environmental Geology, 37(1), pp. 87-98. (2004).
  23. Kim, E. J. and Baek, K. T, "Effect of metal speciations on heavy metal removal from contaminated soils solid-state species of heavy metals in soils play important", Journal of the Korea Society for Environmental Analysis, 17(2), pp. 88-94. (2014).