DOI QR코드

DOI QR Code

Co-Expression of a Chimeric Protease Inhibitor Secreted by a Tumor-Targeted Salmonella Protects Therapeutic Proteins from Proteolytic Degradation

  • Quintero, David (Department of Biology, California State University Northridge) ;
  • Carrafa, Jamie (Department of Biology, California State University Northridge) ;
  • Vincent, Lena (Department of Biology, California State University Northridge) ;
  • Kim, Hee Jong (Department of Biological Chemistry, David Geffen School of Medicine at the University of California at Los Angeles) ;
  • Wohlschlegel, James (Department of Biological Chemistry, David Geffen School of Medicine at the University of California at Los Angeles) ;
  • Bermudes, David (Department of Biology, California State University Northridge)
  • Received : 2018.08.02
  • Accepted : 2018.10.10
  • Published : 2018.12.28

Abstract

Sunflower trypsin inhibitor (SFTI) is a 14-amino-acid bicyclic peptide that contains a single internal disulfide bond. We initially constructed chimeras of SFTI with N-terminal secretion signals from the Escherichia coli OmpA and Pseudomonas aeruginosa ToxA, but only detected small amounts of protease inhibition resulting from these constructs. A substantially higher degree of protease inhibition was detected from a C-terminal SFTI fusion with E. coli YebF, which radiated more than a centimeter from an individual colony of E. coli using a culture-based inhibitor assay. Inhibitory activity was further improved in YebF-SFTI fusions by the addition of a trypsin cleavage signal immediately upstream of SFTI, and resulted in production of a 14-amino-acid, disulfide-bonded SFTI free in the culture supernatant. To assess the potential of the secreted SFTI to protect the ability of a cytotoxic protein to kill tumor cells, we utilized a tumor-selective form of the Pseudomonas ToxA (OTG-PE38K) alone and expressed as a polycistronic construct with YebF-SFTI in the tumor-targeted Salmonella VNP20009. When we assessed the ability of toxin-containing culture supernatants to kill MDA-MB-468 breast cancer cells, the untreated OTG-PE38K was able to eliminate all detectable tumor cells, while pretreatment with trypsin resulted in the complete loss of anticancer cytotoxicity. However, when OTG-PE38K was co-expressed with YebF-SFTI, cytotoxicity was completely retained in the presence of trypsin. These data demonstrate SFTI chimeras are secreted in a functional form and that co-expression of protease inhibitors with therapeutic proteins by tumor-targeted bacteria has the potential to enhance the activity of therapeutic proteins by suppressing their degradation within a proteolytic environment.

Keywords

References

  1. Yoon J, Maruyama J, Kitamoto K. 2004. Disruption of ten protease genes in the filamentous fungus Aspergillus oryzae highly improves production of heterologous proteins. Appl. Microbiol. Biotechnol. 89: 747-759.
  2. Weldon JE, Xiang L, Chertov O, Margulies I, Kreitman RJ, Fitzgerald DJ, et al. 2009. A protease-resistant immunotoxin against CD22 with greatly increased activity against CLL and diminished animal toxicity. Blood 113: 3792-3800. https://doi.org/10.1182/blood-2008-08-173195
  3. Scharpe S, De Meester I, Hendriks D, Vanhoof G, van Sande M, Vriend G. 1991. Proteases and their inhibitors: today and tomorrow. Biochimie 73: 121-126. https://doi.org/10.1016/0300-9084(91)90084-E
  4. Structural Genomics Consortium, China Structural Genomics Consortium, Northeast Structural Genomics consortium, et al. 2888. Protein production and purification. Nat. Methods. 5: 135-146. https://doi.org/10.1038/nmeth.f.202
  5. Jose J, Zangen D. 2005. Autodisplay of the protease inhibitor aprotinin in Escherichia coli. Biochem. Biophys. Res. Commun. 333: 1218-1226. https://doi.org/10.1016/j.bbrc.2005.06.028
  6. Karnaukhova E, Ophir Y, Golding B. 2006. Recombinant human ${\alpha}_l$-proteinase inhibitor towards therapeutic use. Amino Acids 30: 317-332. https://doi.org/10.1007/s00726-005-0324-4
  7. Karnaukhova E, Ophir Y, Trinh L, Dalal N, Punt PJ, Golding B, et al. 2007. Expression of human al-proteinase inhibitor in Aspergillus niger. Microb. Cell Fact. doi: 10.1186/1475-2859-6-34.
  8. Motta J-P, Bermudez-Humaran LG, Deraison C, Martin L, Rolland C, Rousset, P, et al. 2012. Food-grade bacteria expressing elafin protect against inflammation and restore colon homeostasis. Sci. Trans. Med. 4: 158ra144.
  9. Forbes NS. 2010. Engineering the perfect (bacterial) cancer therapy. Nat. Rev. Cancer 10: 785-794. https://doi.org/10.1038/nrc2934
  10. Hoffman RM. 2015. Back to the Future: Are tumor-targeting bacteria the next-generation cancer therapy? Methods Mol. Biol. 1317: 239-260.
  11. Pawelek JM, Low KB, Bermudes D. 1997. Tumor-targeted Salmonella as a novel anticancer vector. Cancer Res. 57: 4537-4544.
  12. Pawelek J, Low KB, Bermudes D. 2003. Bacteria as tumourtargeting vectors. Lancet Oncol. 4: 548-556. https://doi.org/10.1016/S1470-2045(03)01194-X
  13. Low KB, Ittensohn M, Le T, Platt J, Sodi S, Amoss M, et al. 1999. Lipid A mutant Salmonella with suppressed virulence and TNF${\alpha}_l$ induction retain tumor-targeting in vivo. Nat. Biotechnol. 17: 37-41.
  14. Clairmont C, Lee KC, Pike J, Ittensohn M, Low KB, Pawelek J, et al. 2000. Biodistribution and genetic stability of the novel antitumor agent VNP20009, a genetically modified strain of Salmonella. J. Infect. Dis. 181: 1996-2001. https://doi.org/10.1086/315497
  15. Low KB, Ittensohn M, Luo X, Zheng L-M, King I, Pawelek JM, et al. 2004. Construction of VNP20009, a novel, genetically stable antibiotic sensitive strain of tumor-targeting Salmonella for parenteral administration in humans. Methods Mol. Med. 90: 47-60.
  16. Toso JF, Gill VJ , Hwu P, Marincola FM, Restifo NP, Schwartzentruber DJ, et al. 2002. Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J. Clin. Oncol. 20: 142-152. https://doi.org/10.1200/JCO.2002.20.1.142
  17. Nemunaitis J, Cunningham C, Senzer N, Kuhn J, Cramm J, Litz C, et al. 2003. Pilot trial of genetically modified, attenuated Salmonella expression E. coli cytosine deaminase gene in refractory cancer patients. Cancer Gene Ther. 10: 737-744. https://doi.org/10.1038/sj.cgt.7700634
  18. Friedlos F, Lehouritis P, Ogilvie L, Hedley D, Davies L, Bermudes D, et al. 2009. Attenuated Salmonella targets prodrug activating enzyme CPG2 to mouse melanoma, human breast and colon carcinomas for effective suicide gene therapy. Clin. Cancer Res. 14: 4259-4266.
  19. Fu W, Lan H, Li S, Han X, Gao T, Ren D. 2008. Synergistic antitumor efficacy of suicide/ePNP gene and 6-methylpurine 2'-deoxyribosede via Salmonella against murine tumors. Cancer Gene Therapy 15: 474-484. https://doi.org/10.1038/cgt.2008.19
  20. King I, Ittensohn M, Bermudes D. 2009. Tumor-targeted Salmonella typhimurium over-expressing cytosine deaminase: a novel, tumor-selective therapy. Methods Mol. Biol. 542: 649-659.
  21. Chen G, Tang B, Yan BY, Chen JX, Zhou JH, Li JH, Hua ZC. 2013. Tumor-targeting Salmonella typhimurium, a natural tool for activation of prodrug 6MEPdR and their combination therapy in murine melanoma model. Appl. Microbiol. Biotechnol. 97: 4393-4401. https://doi.org/10.1007/s00253-012-4321-8
  22. Kim J-E, Phan T-X, Nguyen VH, Dinh-Vu H-V, Zheng JH, Yun M, et al. 2015. Salmonella typhimurium suppresses tumor growth via the pro-inflammatory cytokine interleukin-1${\beta}$. Theranostics 5: 1328-1342. https://doi.org/10.7150/thno.11432
  23. Sorenson B, Banton K, Augustin L, Barnett S, McCullock K, Frykman N, et al. 2010. Safety and immunogenicity of Salmonella typhimurium expressing C-terminal truncated human IL-2 in a murine model. Biologics 4: 61-73.
  24. Loeffler M, Le'Negrate G, Krajewska M , Reed JC. 2007. Attenuated Salmonella engineered to produce human cytokine LIGHT inhibit tumor growth. Proc. Natl. Acad. Sci. USA 104: 12879-12883. https://doi.org/10.1073/pnas.0701959104
  25. Loeffler M, Le'Negrate G, Krajewska M , Reed JC. 2009. Salmonella typhimurium engineered to produce CCL21 inhibit tumor growth. Cancer Immunol. Immunother. 58: 769-775. https://doi.org/10.1007/s00262-008-0555-9
  26. Loeffler M, Le'Negrate G, Krajewska M, Reed JC. 2008. IL-18-producing Salmonella inhibit tumor growth. Cancer Gene Ther. 15: 787-794. https://doi.org/10.1038/cgt.2008.48
  27. Yoon WS, Chae YS, Hong J, Park YK. 2011. Antitumor therapeutic effects of a genetically engineered Salmonella typhimurium harboring TNF-${\alpha}$ in mice. Appl. Microbiol. Biotechnol. 89: 1807-1819. https://doi.org/10.1007/s00253-010-3006-4
  28. Ganai S, Arenas RB, Forbes NS. 2009. Tumor-targeted delivery of TRAIL using Salmonella typhimurium enhances breast cancer survival in mice. Br. J. Cancer. 101: 1683-1691. https://doi.org/10.1038/sj.bjc.6605403
  29. Lee, C-H, Wu C-L, Shiau A-L. 2004. Endostatin gene therapy delivered by Salmonella choleraesuis in murine tumor models. J. Gene Med. 6: 1382-1393. https://doi.org/10.1002/jgm.626
  30. Jia H, Li Y, Zhao T, Li X, Hu J, Yin D, et al. 2012. Antitumor effects of Stat3-siRNA and endostatin combined therapies, delivered by attenuated Salmonella, on orthotopically implanted hepatocarcinoma. Cancer Immunol. Immunother. 61: 1977-1987. https://doi.org/10.1007/s00262-012-1256-y
  31. Lee, C-H, Wu C-L, Shiau A-L. 2005. Systemic administration of attenuated Salmonella choleraesuis carrying thrombospondin-1 gene leads to tumor-specific transgene expression, delayed tumor growth and prolonged survival in the murine melanoma model. Cancer Gene Ther. 12: 175-184. https://doi.org/10.1038/sj.cgt.7700777
  32. Blache CA, Manuel ER, Kaltcheva TI, Wong AN, Ellenhorn JD, Blazar BR, et al 2012. Systemic delivery of Salmonella typhimurium transformed with IDO shRNA enhances intratumoral vector colonization and suppresses tumor growth. Cancer Res. 72: 6447-6456. https://doi.org/10.1158/0008-5472.CAN-12-0193
  33. Manuel ER, Chen J, D'Apuzzo M, Lampa MG, Kaltcheva TI, Thompson CB, et al. 2015. Salmonella-based therapy targeting indoleamine 2,3-digoxygenase coupled with enzymatic depletion of tumor hyaluronan induces complete regression of aggressive pancreatic tumors. Cancer Immunol. Res. 3: 1096-1107. https://doi.org/10.1158/2326-6066.CIR-14-0214
  34. Zhang L, Gao L, Zhao L, Guo B, Ji K, Tian Y, et al. 2007. Intratumoral delivery and suppression of prostate tumor growth by attenuated Salmonella enterica serovar typhimurium carrying plasmid-based small interfering RNAs. Cancer Res. 67: 5859-5864. https://doi.org/10.1158/0008-5472.CAN-07-0098
  35. Manuel ER, Blache CA, Paquette R, Kaltcheva TI, Ishizaki I, Ellenhorn JD, et al. 2011. Enhancement of cancer vaccine therapy by systemic delivery of a tumor-targeting Salmonellabased STAT3 shRNA suppresses the growth of established melanoma tumors. Cancer Res. 71: 4183-4191. https://doi.org/10.1158/0008-5472.CAN-10-4676
  36. Yang, N, Zhu X, Chen L, Li S and Ren D. 2008. Oral administration of attenuated S. typhimurium carrying shRNAexpressing vectors as a cancer therapeutic. Cancer Biol. Ther. 7: 145-151. https://doi.org/10.4161/cbt.7.1.5195
  37. Ryan RM, Green J, Williams PJ, Tazzyman S, Hunt S, Harmey JH, et al. 2009. Bacterial delivery of a novel cytolysin to hypoxic areas of solid tumors. Gene Ther. 16: 329-339. https://doi.org/10.1038/gt.2008.188
  38. Jeong J-H, Kim K, Lim D, Jeong K, Hong Y, Nguyen VH, et al. 2014. Anti-tumoral effecto fo the mitochondrial target domain of Noxa delivered by an engineered Salmonella typhimurium. PLoS One 9: e80050. https://doi.org/10.1371/journal.pone.0080050
  39. St Jean AT, Swofford CA, Panteli JT, Brentzel JZ, Forbes NS. 2014. Bacterial delivery of Staphylococcus aureus ${\alpha}$ hemolysin causes regression and necrosis in murine tumors. Mol. Ther. 22: 1266-1274. https://doi.org/10.1038/mt.2014.36
  40. Swofford CA, St. Jean AT, Panteli JT, Brentzel ZJ, Forbes NS. 2014. Identification of Staphylococcus aureus ${\alpha}$-hemolysin as a protein drug that is secreted by anticancer bacteria and rapidly kills cancer cells. Biotechnol. Bioeng. 111: 1233-1245. https://doi.org/10.1002/bit.25184
  41. Quintero D, Carrafa J, Vincent L, Bermudes D. 2016. EGFRtargeted chimeras of Pseudomonas ToxA released into the extracellular milieu by attenuated Salmonella selectively kill tumor cells. Biotechnol. Bioeng. 113: 2698-2711. https://doi.org/10.1002/bit.26026
  42. Lim D, Kim KS, Kim H, Ko K-C, Song JJ, Choi JH, et al. 2017. Anti-tumor activity of an immunotoxin (TGF${\alpha}$-PE38) delivered by attenuated Salmonella typhimurium. Oncotarget 8: 37550-37560.
  43. Nguyen CT, Hong SH, Sin J-I, Vu VD, Jeon K, Cho KO, et al. 2013. Flagellin enhances tumor-specific CD8+ T cell immune responses through TLR5 stimulation in a therapeutic cancer vaccine models. Vaccine 31: 3879-3887. https://doi.org/10.1016/j.vaccine.2013.06.054
  44. Zheng JH, Nguyen VH, Jiang S-N, Park S-H, Tan W, Hong SH, et al. 2017. Two-step enhanced cancer immunotherapy with engineered Salmonella typhimurium secreting heterologous flagellin. Sci. Transl. Med. 9: eaak9537. https://doi.org/10.1126/scitranslmed.aak9537
  45. Zhao M, Yang M, Li XM, Jiang P, Baranov E, Li S, et al. 2005. Tumor-targeting bacterial therapy with amino acid auxotrophs of GFP-expressing Salmonella typhimurium. Proc. Natl. Acad. Sci. USA 102: 755-760. https://doi.org/10.1073/pnas.0408422102
  46. Kawaguchi K, Murakami T, Suetsugu A, Kiyuna T, Igarashi K, Hiroshima Y. et al. 2017. High-efficacy targeting of coloncancer liver metastasis with Salmonella typhimurium A1-R via intra-portal-vein injection in orthotopic nude-mouse models. Oncotarget 8: 19065-19073.
  47. Murakami T, Kiyuna T, Kawaguchi K, Igarashi K, Singh AS, Hiroshima Y. et al. 2017. The irony of highly-effective bacterial therapy of a patient-derived orthotopic xenograft (PDOX) model of Ewing's sarcoma, which was blocked by Ewing himself 80 years ago. Cell Cycle 16: 1046-1052 https://doi.org/10.1080/15384101.2017.1304340
  48. Luckett S, Santiago Garcia R, Barker JJ, Konarev AV, Shewry PR, Clarke AR, et al. 1999. High resulution struction of a potent, cyclic protease inhibitor from sunflower seeds. J. Mol Biol. 290: 525-533. https://doi.org/10.1006/jmbi.1999.2891
  49. Yuan C, Chen L, Meehan EJ, Daly N, Craik DJ Huang M, et al. 2011. Structure of the catalytic domain of matriptase complex with sunflower trypsin inhibitor-1. BMC Struct. Biol. doi: 10.1186/1472-6807-11-30.
  50. Zoratti GL, Tanabe LM, Varela FA, Murray AS, Bergum C, Colombo E, et al. 2015. Targeting matriptase in breast cancer abrogates tumour progression via impairment of stromalepithelial growth factor signaling. Nat. Commun. 6: 6776. https://doi.org/10.1038/ncomms7776
  51. Avrutina O, Fitter H, Glotzbach B, Kolmar H, Empting M. 2012. Between two worlds: a comparative study on in vitro and in silico inhibition of trypsin and matriptase by redoxstable SFTI-1 variants at near physiological pH. Org. Biomo. Chem. 10: 7753-7762. https://doi.org/10.1039/c2ob26162f
  52. Zhang G, Brokx S, Weiner JH. 2006. Extracellular accumulation of recombinant proteins fused to the carrier protein YebF in Escherichia coli. Nat. Biotechnol. 24: 100-104. https://doi.org/10.1038/nbt1174
  53. Edwards D, Hoyer-Hansen G, Blasi F, Sloane BF (Eds), 2009. pp. 926. The Cancer Degradome. Springer Science and Business Media, New York, NY.
  54. Eggers CT, Murray IA, Delmar VA, Day GA, Craik CS. 2004. The periplasmic serine protease inhibitor ecotin protects bacteria against neutrophil elastase. Biochem. J. 379: 107-118. https://doi.org/10.1042/bj20031790
  55. Amann E, Ochs B, Abel KJ. 1988. Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in Escherichia coli. Gene 69: 301-315. https://doi.org/10.1016/0378-1119(88)90440-4
  56. Tsai SP, Hartin RJ, Ryu J-I. 1989. Transformation in restriction-deficient Salmonella typhimurium LT2. J. Gen. Microbiol. 135: 2561-2567.
  57. Broadway KM, Modise T, Jensen RV, Scharf BE. 2014. Complete genome sequence of Salmonella enterica serotype Typhimurium VNP20009, engineered for tumor targeting. J. Biotechnol. 20;192Pt A:177-178.
  58. O'Callaghan D, Charbit. 1990. High efficiency transformation of Salmonella typhimurium and Salmonella typhi by electroporation. Mol. Gen. Genet. 223: 156-158. https://doi.org/10.1007/BF00315809
  59. Hoover DM, Lubkowski J. 2002. DNAWorks: An automated method for designing oligonucleotides for PCR-based gene synthesis. Nucleic Acids Res. 30: e43. https://doi.org/10.1093/nar/30.10.e43
  60. Morales M, Attai H, Troy K, Bermudes D. 2014. Accumulation of single-stranded DNA in Escherichia coli carrying the colicin plasmid pColE3-CA38. Plasmid 77: 7-16.
  61. Quintero D and Bermudes D. 2014. A culture-based method for determining the production of secreted protease inhibitors. J. Micro. Methods 100: 105-110. https://doi.org/10.1016/j.mimet.2014.02.019
  62. Rascón AA, Gearin J, Isoe J, and Miesfeld RL. 2011. In vitro activation and enzyme kinetic analysis of recombinant midgut serine proteases from the dengue vector mosquito Aedes aegypti. BMC Biochem. 12: 43. https://doi.org/10.1186/1471-2091-12-43
  63. Snoek-van Beurden PAM, Von den Hoff JW. 2005. Zymographic techniques for the analysis of matrix metalloproteinases and their inhibitors. Biotechniques. 38: 73-83. https://doi.org/10.2144/05381RV01
  64. Le QT, Katunuma N. Detection of protease inhibitors by a reverse zymography method, performed in a tris(hydroxymethyl) aminomethane-tricine buffer system. Anal. Biochem. 324: 237-240.
  65. Mosmann T. 1983. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 65: 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  66. Schmidt FR. 2004. Recombinant expression systems in the pharmaceutical industry. Appl. Microbiol. Biotechnol. 65: 363-372. https://doi.org/10.1007/s00253-004-1656-9
  67. Wessler S, Schneider G, Backert S. 2017. Bacterial serine protease HtrA as a promising new target for antimicrobial therapy. Cell Commun. Signal. 15: 4. https://doi.org/10.1186/s12964-017-0162-5
  68. Prehna G, Zhang G, Gong X, Duszyk M, Okon M, McIntosh LP, et al. 2012 A protein export pathway involving Escherichia coli porins. Structure 20: 1154-1166. https://doi.org/10.1016/j.str.2012.04.014
  69. Sabeh F, Shimizu-Hirota R, Weiss SJ. 2009. Protease-dependent versus -independent cancer cell invasion programs: threedimensional amoeboid movement revisited. J. Cell Biol. 185: 11-19. https://doi.org/10.1083/jcb.200807195
  70. Nakamura Y, Sato K, Wakimoto N, Kumura F, Okuyama A, Motososhi K. 2001. A new matrix metalloproteinase inhibitor SI-27 induces apoptosis in several human myeloid leukemia cell lines and enhances sensitivity to TNF alpha-induced apoptosis. Leukemia 15: 1217-1224. https://doi.org/10.1038/sj.leu.2402187
  71. Mehdad A, Brumana G, Souza AA, Barbosa J, Ventura MM, de Freitas SM. 2016. A Bowman-Birk inhibitor induces apoptosis in human breast cancer adenocarcinoma through mitochondrial impairment and oxidative damage following proteasome 20S inhibition. Cancer Death Discov. 2: 15067. https://doi.org/10.1038/cddiscovery.2015.67
  72. Egeblad M, Werb Z. 2002. New functions for the matrix metalloproteinases in cancer progression. Nat. Rev. Cancer 2: 161-174. https://doi.org/10.1038/nrc745
  73. Peters DC, Nobel S. 1999. Aprotinin: An update of its pharmacology and therapeutic use in open heart surgery and coronary artery bypass surgery. Drugs 57: 233-260. https://doi.org/10.2165/00003495-199957020-00015
  74. Ihara S, Miyoshi E, Ko JH, Murata K, Nakahara S, Honke K, et al. 2002. Prometastatic effect of N-acetylglucosaminyltransferase V is due to modification and stabilization of active matriptase by adding ${\beta}$1-6 GlcNAc branching. J. Biol. Chem. 277: 16960-16967. https://doi.org/10.1074/jbc.M200673200
  75. Kang JY, Dolled-Filhart M, Ocal IT, Singh B, Lin CY, Dickson RB. et al. 2003. Progression of node-negative breast cancer and hepatocyte growth factor activator inhibitor 1 in the pathway components reveals a role for Met, matriptase, and hepatocyte growth factor activator inhibitor 1 in the progression of node-negative breast cancer. Cancer Res. 63: 1101-1105.
  76. LeBeau AM, Lee M, Murphy ST, Hann BC, Warren RS, Santos RD, et al. 2013. Imaging a functional tumorigenic biomarker in the transformed epithelium. Proc. Natl. Acad. Sci. USA 110: 93-98. https://doi.org/10.1073/pnas.1218694110
  77. Uhland K. Matriptase and its putative role in cancer. 2006. Cell. Mol. Life Sci. 3: 2968-2978.
  78. Takeuchi T, Harris JL, Wuang W, Yan KW, Coughlin SR, Craik CS. 2000. Cellular localization of membrane-type serine protease I and identification of protease-activated receptor-2 and single-chain urokinase-type plasminogen activator as substrates. J. Biol. Chem. 275: 26333-26342. https://doi.org/10.1074/jbc.M002941200
  79. Ge L, Shenoy SK, Lefkowitz RJ, DeFea K. 2004. Constitutive protease-activated receptor-2-mediated migration of MDA MB-231 breast cancer cells requires both beta-arrestin-1 and -2. J. Biol. Chem. 279: 55419-55424. https://doi.org/10.1074/jbc.M410312200
  80. Bergum C, Zoratti G, List K. 2012. Strong expression association between matriptase and its substrate prostasin in breast cancer. J. Cell Physiol. 227: 1604-1609. https://doi.org/10.1002/jcp.22877
  81. Cheng M-F, Huang M-S, Lin C-S, Lin L-H, Lee H-S, Jiang J-C, et al. 2014. Expression of matriptase correlates with tumour progression and clinical prognosis in oral squamous cell carcinoma. Histopathology 65: 24-34. https://doi.org/10.1111/his.12361
  82. Vergnolle N. 2016. Protease inhibition as new therapeutic strategy for GI diseases. Gut 65: 1215-1224. https://doi.org/10.1136/gutjnl-2015-309147
  83. Marx UC, Korsinczky MLJ, Schirra HJ, Jones A, Condie B, Otvos Jr L, et al. 2003. Enzymatic cyclization of a potent Bowman-Birk protease inhibitor, sunflower trypsin inhibitor-1, and solution structure of an acyclic precursor peptide. J. Biol. Chem. 278: 21782-21789. https://doi.org/10.1074/jbc.M212996200
  84. Korsincsky ML, Clark RJ, Craik DJ. 2005. Disulfide bond mutagenesis and the structure and function of the head-totail macrocyclic trypsin inhibitor SFTI-1. Biochemistry 44: 1145-1153. https://doi.org/10.1021/bi048297r
  85. de Veer SJ, Wang CK, Harris JM, Craik DJ, Swedberg JE. 2015. Improving the selectivity of engineered protease inhibitors: optimizing the P2 prime residue using a versatile cyclic peptide library. J. Med. Chem. 58: 8257-8268. https://doi.org/10.1021/acs.jmedchem.5b01148
  86. Fittler K, Avrutina O, Empting M, Kolmar H. 2014. Potent inhibitors of human matriptase-1 based on the scaffold of sunflower trypsin inhibitor. J. Peptide Sci. 20: 415-420. https://doi.org/10.1002/psc.2629
  87. Jose J, Meyer TF. 2007. The autodisplay story, from discovery to biotechnical and biomedical applications. Microbiol. Mol. Biol. Rev. 71: 600-619. https://doi.org/10.1128/MMBR.00011-07
  88. Schell DJ, Dowe N, Ibsen KN, Riley CJ, Ruth MF, Lumpkin RE. 2007. Contaminant occurrence, identification and control in a pilot-scale corn fiber to ethanol conversion process. Bioresour. Technol. 98: 2942-2948. https://doi.org/10.1016/j.biortech.2006.10.002
  89. Miratis Sulthoniyah ST, Hardoko, Nursyam H. 2015. Characterization of extracellular protease lactic acid bacteria from shrimp paste. J. Life Sci. Biomed. 5: 01-05.
  90. Kliche T, Li B, Bockelmann W, Habermann D, Klempt M, de Vrese M, et al. 2017. Screening for proteolytically active lactic acid bacteria and bioactivity of peptide hydrolysates obtained with selected strains. Appl. Microbiol. Biotechnol. 101: 7621-7633. https://doi.org/10.1007/s00253-017-8369-3