DOI QR코드

DOI QR Code

Screening of Skin-permeable Peptide in Thermal Stabilizing Formulation Using Phage Display

파지디스플레이를 이용한 성장인자 안정화 제형 맞춤형 피부 투과 펩타이드의 개발

  • Lee, Seol-Hoon (Department of Applied Chemistry, Dongduk Women's University)
  • 이설훈 (동덕여자대학교 응용화학부 화장품학 전공)
  • Received : 2018.07.05
  • Accepted : 2018.08.23
  • Published : 2018.12.28

Abstract

In this study, we identified methods to improve heat stability and skin permeability of functional protein biopolymers, such as growth factors, enzymes, and peptides. The biopolymers participate in cellular activation and catalytic functions in vivo. Therefore, when applied to cosmetics, their efficacies are expected to be helpful for skin care. However, they have disadvantages that include instability to heat and low skin permeability due to their high molecular weight. To overcome these problems, we searched for a composition that increases heat stability. Stability was improved using a polymeric humectant having a long polyethylene glycol length, compared with a mono-molecular structure humectant. Next, to enhance skin permeation, a permeation enhancing peptide was selected from a phage library. The permeation enhancing peptide can be commonly used to promote the permeation of growth factors, enzymes, and peptides. Screening was performed on the polymeric humectant formulation. One dominant peptide from the modified-screening method was identified. Furthermore, it was confirmed that the permeability of the peptide was better than that of the peptide developed through a screening system based on phosphate-buffered saline. The data indicate that the polymeric humectant formulation will be helpful for increasing the heat stability of protein ingredients and that skin permeability could be increased by a formulation-specific, penetration-enhancing peptide.

본 연구에서는 성장인자, 효소, 펩타이드 등과 같은 기능성 생체 고분자를 대상으로 열에 대한 안정성 및 피부 투과성을 향상시키는 연구를 수행하였다. 이들은 생체 내에서 세포를 활성화 하거나 촉매 작용을 담당하고 있다. 따라서 화장품 등의 외용제에 적용 시, 그 효능의 우수함이 예상되나 열에 대한 불안정성과 높은 분자량으로 피부 투과성이 낮은 단점이 있다. 이를 극복하기 위해 먼저 열에 대한 안정성을 확보할 수 있는 조성을 탐색하였다. 그 결과, 단분자 구조의 humectant 대비 PEG의 길이가 긴 polymeric humectant를 사용한 경우 열에 대한 안정성이 높아지는 것을 확인 할 수 있었다. 한편 이들의 피부 투과를 촉진시키기 위하여 투과 촉진 펩타이드를 phage library로부터 선별하고자 하였다. 투과 촉진 펩타이드는 성장인자, 효소, 펩타이드의 투과 촉진을 위해 공통적으로 사용할 수 있는 구조이다. 그러나 피부의 투과정도는 물질자체의 특성도 영향을 미칠 수 있으나 제형의 성분에 따라서 영향을 받을 수 있다. 본 연구에서는 성장인자를 안정화 할 수 있는 polymeric humectant 제형을 기반으로 투과 촉진 펩타이드 선별을 수행하였다. 그 결과 대조군 펩타이드 대비 투과촉진이 향상된 결과를 확인했을 뿐만 아니라 PBS를 기반으로 선별된 투과 촉진 펩타이드 보다 polymeric humectant 제형에서는 투과도가 우수한 것을 확인 할 수 있었다. 본 연구의 결과는 기능성 생체고분자의 열 안정성 개선 및 피부 투과도 향상에 기여할 수 있을 것으로 기대된다.

Keywords

References

  1. Lee SH, Choi HS, Kim H, Lee Y. 2008. ERK is a novel regulatory kinase for poly(A) polymerase. Nucl. Acids Res. 36: 803-813.
  2. Pastore S, Mascia F, Mariani V, Girolomoni G. 2008. The epidermal growth factor receptor system in skin repair and inflammation. J. Invest. Dermatol. 128: 1365-1374. https://doi.org/10.1038/sj.jid.5701184
  3. Geesin JC, Brown LJ, Gordon JS, Berg RA. 1993. Regulation of collagen synthesis in human dermal fibroblasts in contracted collagen gels by ascorbic acid, growth factors, and inhibitors of lipid peroxidation. Exp. Cell Res. 206: 283-290. https://doi.org/10.1006/excr.1993.1148
  4. Blasi J, Chapman ER, Link E, Binz T, Yamasaki S, De Camilli P, et al. 1993. Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25. Nature 365: 160-163. https://doi.org/10.1038/365160a0
  5. Borgono CA, Michael IP, Komatsu N, Jayakumar A, Kapadia R, Clayman GL, et al. 2007. A potential role for multiple tissue kallikrein serine proteases in epidermal desquamation. J. Biol. Chem. 282: 3640-3652.
  6. Jun S-H, Lee S-H, Kim SY, Park SG, Lee C-K, Kang N-K. 2017. Physical properties of TEMPO-oxidized bacterial cellulose nanofibers on the skin surface. Cellulose 24: 5267-5274. https://doi.org/10.1007/s10570-017-1508-2
  7. Wang Z, Wang Z, Lu WW, Zhen W, Yang D, Peng S. 2017. Novel biomaterial strategies for controlled growth factor delivery for biomedical applications. NPG Asia Mater. 9: e435-17. https://doi.org/10.1038/am.2017.171
  8. Mensink MA, Frijlink HW, van der Voort Maarschalk K, Hinrichs WL. 2017. How sugars protect proteins in the solid state and during drying (review): Mechanisms of stabilization in relation to stress conditions. Eur. J. Pharm. Biopharm. 114: 288-295. https://doi.org/10.1016/j.ejpb.2017.01.024
  9. Moser K, Kriwet K, Naik A, Kalia YN, Guy RH. 2001. Passive skin penetration enhancement and its quantification in vitro. Eur. J. Pharm. Biopharm. 52: 103-112. https://doi.org/10.1016/S0939-6411(01)00166-7
  10. Jenning V, Gohla SH. 2001. Encapsulation of retinoids in solid lipid nanoparticles ($SLN^{(R)}$). J. Microencapsul. 18: 149-158. https://doi.org/10.1080/02652040010000361
  11. de Lencastre Novaes LC, Mazzola PG, Pessoa A Jr, Penna TC. 2010. Effect of polyethylene glycol on the thermal stability of green fluorescent protein. Biotechnol. Prog. 26: 252-256
  12. Lee S-H, Kang NG, Lee S. 2013. Selection of skin-penetrating peptide using phage display. Yakhak Hoeiji 57: 125-131.
  13. Simon GA, Maibach HI. 2000. The pig as an experimental animal model of percutaneous permeation in man: qualitative and quantitative observations--an overview. Skin Pharmacol. Appl. Skin Physiol. 13: 229-234. https://doi.org/10.1159/000029928
  14. Samuelsson K, Simonsson C, Jonsson CA, Westman G, Ericson MB, Karlberg AT. 2009. Accumulation of FITC near stratum corneum-visualizing epidermal distribution of a strong sensitizer using two-photon microscopy. Contact Dermatitis 61: 91-100. https://doi.org/10.1111/j.1600-0536.2009.01591.x
  15. Makino T, Jinnin M, Muchemwa FC, Fukushima S, Kogushi-Nishi H, Moriya C, 2009. Basic fibroblast growth factor stimulates the proliferation of human dermal fibroblasts via the ERK1/2 and JNK pathways. Br. J. Dermatol. 162: 717-723. https://doi.org/10.1111/j.1365-2133.2009.09581.x
  16. Chen G, Gulbranson DR, Yu P, Hou Z, Thomson JA. 2012. Thermal stability of fibroblast growth factor protein is a determinant factor in regulating self-renewal, differentiation, and reprogramming in human pluripotent stem cells. Stem Cells 30: 623-630. https://doi.org/10.1002/stem.1021
  17. Kumar S, Sahdev P, Perumal O, Tummala H. 2012. Identification of a novel skin penetration enhancement peptide by phage display peptide library screening. Mol. Pharmaceutics 9: 1320-1330. https://doi.org/10.1021/mp200594z
  18. Hsu T, Mitragotri S. 2011. Delivery of siRNA and other macromolecules into skin and cells using a peptide enhancer. Proc. Natl. Acad. Sci. USA 108: 15816-15821. https://doi.org/10.1073/pnas.1016152108
  19. Boelsma E, Tanojo H, Bodde HE, Ponec M. 1996. Assessment of the potential irritancy of oleic acid on human skin: Evaluation in vitro and in vivo. Toxicol. Vitr. 10: 729-742. https://doi.org/10.1016/S0887-2333(96)00053-7
  20. van Meer G, Voelker DR, Feigenson GW. 2008. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9: 112-124. https://doi.org/10.1038/nrm2330
  21. Eguchi A, Akuta T, Okuyama H, Senda T, Yokoi H, Inokuchi H. et al. 2001. Protein transduction domain of HIV-1 Tat protein promotes efficient delivery of DNA into mammalian cells. J. Biol. Chem. 276: 26204-26210. https://doi.org/10.1074/jbc.M010625200

Cited by

  1. 세포투과 펩티드를 함유한 고분자 미셀 및 리포좀을 이용한 배나무 잎 추출물의 피부 흡수 증진 vol.36, pp.3, 2019, https://doi.org/10.12925/jkocs.2019.36.3.685