DOI QR코드

DOI QR Code

Simultaneous Overpexpression of Genes Encoding Cellulose- and Xylan-Degrading Enzymes through High Density Culture of a Recombinant Yeast Cell

재조합 효모 세포의 고농도배양을 통한 섬유소와 자일란 분해효소 유전자의 동시 과발현

  • Kim, Yeon-Hee (Biomedical Engineering and Biotechnology Major, Division of Applied Bioengineering, College of Engineering, Dong-Eui University) ;
  • Heo, Sun-Yeon (Microbial Biotechnology Research Center, Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Gun-Do (Department of Microbiology, College of Natural Sciences, Pukyong National University) ;
  • Nam, Soo-Wan (Biomedical Engineering and Biotechnology Major, Division of Applied Bioengineering, College of Engineering, Dong-Eui University)
  • 김연희 (동의대학교 공과대학 바이오응용공학부 의생명공학전공) ;
  • 허선연 (한국생명공학연구원 전북분원 미생물기능연구센터) ;
  • 김군도 (부경대학교 미생물학과) ;
  • 남수완 (동의대학교 공과대학 바이오응용공학부 의생명공학전공)
  • Received : 2018.10.16
  • Accepted : 2018.11.12
  • Published : 2018.12.28

Abstract

For the coexpression of endoxylanase and endoglucanase genes in yeast Saccharomyces cerevisiae, the genes were separately inserted downstream of the yeast ADH1 promoters, resulting the plasmid pAGX3 (9.83 kb). In the batch culture on YPD medium of the yeast transformant, S. cerevisiae SEY2102/pAGX3, the total activities of the enzymes reached about 7.91 units/ml for endoxylanase and 0.43 units/ml for endoglucanase. In the fed-batch culture with intermittent feeding of yeast extract and glucose, the total activities of 24.9 units/ml for endoxylanase and 0.84 units/ml for endoglucanase were produced which were about 3.1-fold and 2.0-fold increased levels, respectively, compared to those of the batch culture. Most of endoxylanase and endoglucanase activities were found in the extracellular media. This recombinant yeast could be useful for the development of simultaneous saccharification bioprocess of the cellulose and xylan mixture.

Endoxylanase와 endoglucanase 유전자가 ADH1 프로모터 하류에 따로따로 삽입된 pAGX3 플라스미드를 함유한 Saccharomyces cerevisiae에서 endoxylanase와 endoglucanase 유전자는 성공적으로 발현되었으며, YPD 배지에서의 회분배양 결과, endoxylanase는 7.91 units/ml, endoglucanase는 0.43 units/ml에 달하는 총활성을 보였다. Yeast extract와 포도당을 간헐적으로 공급하는 유가배양에서 endoxylanase와 endoglucanase의 총활성은 24.9 units/ml과 0.84 units/ml을 각각 보였으며, 이는 회분배양에서 발현된 각각 활성의 3.1배와 2배에 해당되었다. 또한, 대부분의 endoxylanase와 endoglucanase 활성은 세포밖 배지에서 측정되어, 향후 이 재조합 효모는 섬유소(cellulose)와 xylan 혼합물의 동시당화 바이오공정 개발에 활용될 가능성이 높다 하겠다.

Keywords

References

  1. Viikari L, Alapuranen M, Puranen T, Vehmaanpera J, Siika-Aho M. 2007. Thermostable enzymes in lignocellulose hydrolysis. Adv. Biochem. Eng. Biotechnol. 108: 121-145.
  2. Okeke BC. 2014. Cellulolytic and xylanolytic potential of high ${\beta}$-glucosidase-producing Trichoderma from decaying biomass. Appl. Biochem. Biotechnol. 174: 1581-1598. https://doi.org/10.1007/s12010-014-1121-x
  3. Murashima K, Kosugi A, Doi RH. 2003. Synergistic effects of cellulosomal xylanase and cellulases from Clostridium cellulovorans on plant cell wall degradation. J. Bacterio. 185: 1518-1524. https://doi.org/10.1128/JB.185.5.1518-1524.2003
  4. Lambertz C, Garvey M, Klinger J, Heesel D, Klose H, Fischer R, et al. 2014. Challenges and advances in the heterologous expression of cellulolytic enzymes: a review. Biotechnol. Biofuels. 7: 135. https://doi.org/10.1186/s13068-014-0135-5
  5. Hwangbo M, Tran JL, Chu KH. 2018. Effective one-step saccharification of lignocellulosic biomass using magnetite-biocatalysts containing saccharifying enzymes. Sci. Total Environ. 647: 806-813.
  6. Kumar V, Dangi AK, Shukla P. 2018. Engineering thermostable microbial xylanases toward its industrial applications. Mol. Biotechnol. 60: 226-235. https://doi.org/10.1007/s12033-018-0059-6
  7. Gellissen G, Melber K, Janowicz ZA, Dahlems UM, Weydemann U, Piontek M, et al. 1992. Heterologous protein production in yeast. Antonie Van Leeuwenhoek. 62: 79-93. https://doi.org/10.1007/BF00584464
  8. Shi X, Zou Y, Chen Y, Ying H. 2018. Overexpression of THI4 and HAP4 improves glucose metabolism and ethanol production in Saccharomyces cerevisiae. Front Microbiol. 9: 1444. https://doi.org/10.3389/fmicb.2018.01444
  9. Jiang J, Yin H, Wang S, Zhuang Y, Liu S, Liu T, et al. 2018. Metabolic engineering of Saccharomyces cerevisiae for high-level production of salidroside from glucose. J. Agric. Food Chem. 66: 4431-4438. https://doi.org/10.1021/acs.jafc.8b01272
  10. Han JY, Seo SH, Song JM, Lee H, Choi ES. 2018. High-level recombinant production of squalene using selected Saccharomyces cerevisiae strains. J. Ind. Microbiol. Biotechnol. 45: 239-251. https://doi.org/10.1007/s10295-018-2018-4
  11. Rojas NL, Ortiz GE, Baruque DJ, Cavalitto SF, Ghiringhelli PD. 2011. Production of heterologous polygalacturonase I from Aspergillus kawachii in Saccharomyces cerevisiae in batch and fed-batch cultures. J. Ind. Microbiol. Biotechnol. 38: 1437-1447. https://doi.org/10.1007/s10295-010-0929-9
  12. Lim SH, Lee H, Sok DE, Choi ES. 2010. Recombinant production of an inulinase in a Saccharomyces cerevisiae gal80 strain. J. Microbiol. Biotechnol. 20: 1529-1533. https://doi.org/10.4014/jmb.1007.07009
  13. Landi C, Paciello L, de Alteriis E, Brambilla L, Parascandola P. 2015. High cell density culture with S. cerevisiae CEN. PK113-5D for IL-$1{\beta}$ production: optimization, modeling, and physiological aspects. Bioprocess Biosyst. Eng. 38: 251-261. https://doi.org/10.1007/s00449-014-1264-8
  14. Jeong KJ, Lee PC, Park IY, Kim MS, Kim SC. 1998. Molecular cloning and characterization of an endoxylanase gene of Bacillus sp. in Escherichia coli. Enz. Microb. Technol. 22: 599-605. https://doi.org/10.1016/S0141-0229(97)00256-1
  15. Shin DH, Kim JB, Kim BW, Nam SW, Shin JW, Chung DK, et al. 1998. Expression and secretion of Trichoderma endoglucanase in Saccharomyces cerevisiae. Korean J. Appl. Microbiol. Biotechnol. 26: 406-412.
  16. Lee JH, Lim MY, Kim MJ, Heo SY, Seo JH, Kim YH, et al. 2007. Constitutive coexpression of Bacillus endoxylanase and Trichoderma endoglucanase genes in Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 17: 2076-2080.
  17. Su X, Geng X, Fu M, Wu Y, Yin L, Zhao F, et al. 2017. High-level expression and purification of a molluskan endoglucanase from Ampullaria crossean in Pichia pastoris. Protein. Exp. Purif. 139: 8-13. https://doi.org/10.1016/j.pep.2017.07.007
  18. Zhou J, Zhu P, Hu X, Lu H, Yu Y. 2018. Improved secretory expression of lignocellulolytic enzymes in Kluyveromyces marxianus by promoter and signal sequence engineering. Biotechnol. Biofuels 11: 235-248. https://doi.org/10.1186/s13068-018-1232-7