DOI QR코드

DOI QR Code

Microbial Strains and Bioactive Exopolysaccharide Producers from Thai Water Kefir

  • Luang-In, Vijitra (Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University) ;
  • Saengha, Worachot (Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University) ;
  • Yotchaisarn, Manatchanok (Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University) ;
  • Halaslova, Monika (Institute of Biotechnology and Food Science, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava) ;
  • Udomwong, Piyachat (International College of Digital Innovation, Chiang Mai University) ;
  • Deeseenthum, Sirirat (Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University)
  • Received : 2018.05.01
  • Accepted : 2018.07.14
  • Published : 2018.12.28

Abstract

The aims of this novel work were to determine the microbial strains and exopolysaccharide (EPS) producers in water kefir from Nakhon Ratchasima Province, Thailand. Thirty-three microbial strains were identified using 16S rRNA gene analysis consisting of 18 bacterial strains, as 9 strains of acetic acid bacteria (AAB), 9 strains of lactic acid bacteria (LAB), and 15 yeast strains. All bacteria were able to produce EPS with a diverse appearance on agar media containing different sugars at a concentration of 8%. Culture supernatants from AAB and LAB showed 31-64% 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity with the highest antioxidant activity of 64% from Acetobacter pasteurianus WS3 and WS6. Crude EPS from A. pasteurianus WS3 displayed the highest ferric reducing antioxidant power at 280 mM $FeSO_4/g$ EPS, greatest anti-tyrosinase activity at 20.35%, and highest EPS production of 1,505 mg EPS/L from 8% sucrose. These microbes offer beneficial health implications and their EPSs can be used as food additives and cosmetic ingredients.

Keywords

References

  1. Nielsen B, Gurakan GC, Unlu G. 2014. Kefir: a multifaceted fermented dairy product. Probiotics Antimicrob. Proteins. 6: 123-135. https://doi.org/10.1007/s12602-014-9168-0
  2. John SM, Deeseenthum S. 2015. Properties and benefits of kefir - A review. Songklanakarin J. Sci. Technol. 37: 275-282.
  3. Diosma G, Romanin DE, Rey-Burusco MF, Alejandra L, Garrote LG. 2014. Yeasts from kefir grains: isolation, identification, and probiotic characterization. World J. Microbiol. Biotechnol. 30: 43-53. https://doi.org/10.1007/s11274-013-1419-9
  4. Miguel MG, Cardoso PG, Magalhaes-Guedes KT, Schwan RF. 2013. Identification and assessment of kefir potential for sugar/ethanol-resistance. Braz. J. Microbiol. 44: 113-118. https://doi.org/10.1590/S1517-83822013005000005
  5. Silva KR, Rodrigues SA, Filho LX, Lima AS. 2009. Antimicrobial activity of broth fermented with kefir grains. Appl. Microbiol. Biotechnol. 152: 316-325.
  6. Waldherr FW, Doll VM, MeiBner D, Vogel RF. 2010. Identification and characterization of a glucan-producing enzyme from Lactobacillus hilgardii TMW 1.828 involved in granule formation of water kefir. Food Microbiol. 27: 672-678. https://doi.org/10.1016/j.fm.2010.03.013
  7. Mitsue T, Tachibana K, Fujio Y. 1999. Efficient kefiran production by a mixed culture of Lactobacillus kefiranofaciens KF-75 and yeast strains. J. Biosci. Bioeng 87: 400.
  8. Deeraksa A, Moonmangmee S, Toyama H, Yamada M, Adachi O, Matsushita K. 2005. Characterization and spontaneous mutation of a novel gene, polE, involved in pellicle formation in Acetobacter tropicalis SKU1100. Microbiology 151: 4111-4120. https://doi.org/10.1099/mic.0.28350-0
  9. Freitas F, Alves AV, Carvalheira M, Costa N, Oliveira R, Reis MA. 2009. Emulsifying behaviour and rheological properties of the extracellular polysaccharide produced by Pseudomonas oleovorans grown on glycerol by product. Carbohydr. Polym. 78: 549-556. https://doi.org/10.1016/j.carbpol.2009.05.016
  10. Mahapatra S, Banerjee D. 2013. Fungal Exopolysaccharide: production, composition and applications. Microbiol. Insights. 6: 1-16.
  11. Parikh A, Madamwar D. 2006. Partial characterization of extracellular polysaccharides from Cyanobacteria. Bioresour. Technol. 97: 1822-1827. https://doi.org/10.1016/j.biortech.2005.09.008
  12. Sutherland IW. 2001. Microbial polysaccharides from gram-negative bacteria. Int. Dairy J. 11: 663-674. https://doi.org/10.1016/S0958-6946(01)00112-1
  13. Mota R, Guimaraes R, Buttel Z, Rossi F, Colica G, Silva CJ, et al. 2013. Production and characterization of extracellular carbohydrate polymer from Cyanothece sp. CCY 0110. Carbohydr. Polym. 92: 1408-1415. https://doi.org/10.1016/j.carbpol.2012.10.070
  14. Luang-In V, Deeseenthum S. 2016. Exopolysaccharide-producing isolates from Thai milk kefir and their antioxidant activities. LWTFood Sci. Technol. 73: 592-601.
  15. Kimura M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120. https://doi.org/10.1007/BF01731581
  16. Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33: 1870-1874. https://doi.org/10.1093/molbev/msw054
  17. Rambaut A. 2012. FigTree v1. 4. Molecular evolution, phylogenetics and epidemiology. Edinburgh, UK: University of Edinburgh, Institute of Evolutionary Biology. Biology. .
  18. Paulo EM, Vasconcelos MP, Oliveira IS, Affe HMJ, Nascimento R, MELO, I. S. de et al. 2012. An alternative method for screening lactic acid bacteria for the production of exopolysaccharides with rapid confirmation. Ciencia e Tecnologia de Alimentos. 32: 710-714. https://doi.org/10.1590/S0101-20612012005000094
  19. Benzie IFF, Strain JJ. 1996. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power : The FRAP Assay. Anal. Biochem. 239: 70-76. https://doi.org/10.1006/abio.1996.0292
  20. Seeram NP, Adams LS, Zhang Y, Lee R, Sand D, Scheuller HS, et al. 2006. Blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry extracts inhibit growth and stimulate apoptosis of human cancer cells in vitro. J. Agric. Food Chem. 54: 9329-9339. https://doi.org/10.1021/jf061750g
  21. Choi HK, Lim YS, Kim YS, Park SY, Lee CH, et al. 2008. Free-radicalscavenging and tyrosinase-inhibition activities of Cheonggukjang samples fermented for various times. Food Chem. 106: 564-568. https://doi.org/10.1016/j.foodchem.2007.06.024
  22. Li L, Wieme A, Spitaels F, Balzarini T, Nunes O, Manaia CM, et al. 2014. Acetobacter sicerae sp. nov., isolated from cider and kefir, and identification of strains of the genus Acetobacter by dnaK, groEL and rpoB sequence analysis. Int. J. Syst. Evol. Microbiol. 64: 2407-2415. https://doi.org/10.1099/ijs.0.058354-0
  23. Chen Z, Shi J, Yang X, Liu Y, Nan B, Zhongfu W. 2016. Isolation of exopolysaccharide-producing bacteria and yeasts from Tibetan kefir and characterisation of the exopolysaccharides. Int. J. Dairy Technol. 69: 410-417. https://doi.org/10.1111/1471-0307.12276
  24. Wang Y, Xu N, Xi A, Ahmed Z, Zhang B, Bai X. 2009. Effects of Lactobacillus plantarum MA2 isolated from Tibet kefir on lipid metabolism and intestinal microflora of rats fed on high-cholesterol diet. Appl. Microbiol. Biotech. 84: 341-347. https://doi.org/10.1007/s00253-009-2012-x
  25. Rao BP, Sudharsan K, Sekaran RCHG, Mandal AB. 2013. Characterization of exopolysaccharide from Bacillus amyloliquefaciens BPRGS for its bioflocculant activity. Int. J. Sci. Eng. Res. 4: 1696-1704.
  26. Coda R, Rizzello CG, Di Cagno R, Trani A, Cardinali G, Gobbetti M. 2013. Antifungal activity of Meyerozyma guilliermondii: identification of activity compounds synthesized during dough fermentation and their effect on long-term storage of wheat bread. Food Microbiol. 33: 243-251. https://doi.org/10.1016/j.fm.2012.09.023
  27. Osimani A, Garofalo C, Aquilanti L, Milanovic V, Clementi F. 2015. Unpasteurised commercial boza as a source of microbial diversity. Int. J. Food Microbiol. 194: 62-70. https://doi.org/10.1016/j.ijfoodmicro.2014.11.011
  28. Gulitz A, Stadie J, Wenning M, Ehrmann MA, vogel RF. 2011. The microbial diversity of water kefir. Int. J. Food Microbiol. 151: 284-288. https://doi.org/10.1016/j.ijfoodmicro.2011.09.016
  29. Gruter M, Leeflang BR, Kuiper J, Kamerling JP, Vliegenthart JFG. 1992. Structure of the exopolysaccharide produced by Lactococcus lactis sub cremoris H414 grown in a defined medium or skimmed-milk. Carbohydr. Res. 231: 273-291. https://doi.org/10.1016/0008-6215(92)84025-N
  30. van Casteren WHM, de Waard P, Dijkema C, Schols HA, Voragen AGJ. 2000. Structural characterisation and enzymatic modification of the exopolysaccharide produced by Lactococcus lactis subsp. cremoris B891. Carbohydr. Res. 327: 411-422. https://doi.org/10.1016/S0008-6215(00)00065-3
  31. Ali IAI, Akakabe Y, Moonmangmee S, Deeraksa A, Matsutani M, Yakushi T. 2011. Structural characterization of pellicle polysaccharides of Acetobacter tropicalis SKU1100 wild type and mutant strains. Carbohydr. Polym. 86: 1000-1006. https://doi.org/10.1016/j.carbpol.2011.05.055
  32. Grobben GJ, Smith MR, Sikkema J, de Bont JAM. 1996. Influence of fructose and glucose on the production of exopolysaccharides and the activities of enzymes involved in the sugar metabolism and the synthesis of sugar nucleotides in Lactobacillus delbrueckii subsp. Bulgaricus NCFB 2772. Appl. Microbiol. Biotechnol. 46: 279-284. https://doi.org/10.1007/s002530050817
  33. Looijesteijn PJ, Boels IC, Kleerebezem M, Hugenholtz J. 1999. Regulation of exopolysaccharide production by Lactococcus lactis subsp. cremoris by the sugar source. Appl. Environ. Microbiol. 65: 5003-5008.
  34. Zhang T, Zhang C, Li S, Zhang Y, Yang Z. 2011. Growth and exopolysaccharide production by Streptococcus thermophilus ST1 in skim milk. Braz. J. Microbiol. 42: 1470-1478. https://doi.org/10.1590/S1517-83822011000400033
  35. Yang JH, Mau JL, Ko PT, Huang LC. 2000. Antioxidant properties of fermented soybean broth. Food Chem. 71: 249-54. https://doi.org/10.1016/S0308-8146(00)00165-5
  36. Sakanaka S, Tachibana Y, Okada Y. 2005. Preparation and antioxidant properties of extracts of Japanese persimmon leaf tea (kakinoha-cha). Food Chem. 89: 569-675. https://doi.org/10.1016/j.foodchem.2004.03.013
  37. Moonmangmee S, Toyama H, Adachi O, Theeragool G, Lotong N, Matsushit K. 2002. Purification and characterization of a novel polysaccharide involved in the pellicle produced by a thermotolerant Acetobacter strain. Biosci. Biotechnol. Biochem. 66: 777-783. https://doi.org/10.1271/bbb.66.777
  38. Li N, Wang Y, Zhu P, Liu Z, Guo B, Ren J. 2015. Improvement of exopolysaccharide production in Lactobacillus casei LC2W by overexpression of NADH oxidase gene. Microbiol. Res. 171: 73-77. https://doi.org/10.1016/j.micres.2014.12.006
  39. Cerning J, Renard CM, Thibault JF, Bouillanne C, Landon M, Desmazeaud M et al. 1994. Carbon source requirements for exopolysaccharide production by Lactobacillus casei CG11 and partial structure analysis of the polymer. Appl. Environ. Microbiol. 60: 3914-3919.
  40. Mozzi F, Savoy de Giori G, Oliver G, Font de Valdez G. 1996. Exopolysaccharide production by Lactobacillus casei in milk under different growth conditions. Milchwissenschaft. 51: 670-673.
  41. Bajpai VK, Rather IA, Park YH. 2016. Partially purified exo-polysaccharide from Lactobacillus sakei Probio 65 with antioxidant, ${\alpha}$-glucosidase and tyrosinase inhibitory potential. J. Food Biochem. 40: 264-274. https://doi.org/10.1111/jfbc.12230
  42. Baek HS, Rho HS, Yoo JW, Ahn SM, Lee JY, Kim JA. 2008. The inhibitory effect of new hydroxamic acid derivatives on melanogenesis. Bull. Korean Chem. Soc. 29: 43-46. https://doi.org/10.5012/bkcs.2008.29.1.043
  43. Hima Bindu NSVSSSL, Singara Charya MA. 2017. Biological activities of exopolysaccharide from the mushroom. Fomitopsis feei. Int. J. Microbiol. Res. 8: 48-58.
  44. Song YR, Song NE, Kim JH, Nho YC, Baik SH. 2011. Exopolysaccharide produced by Bacillus licheniformis strains isolated from Kimchi. J. Gen. Appl. Microbiol. 57: 169-175. https://doi.org/10.2323/jgam.57.169
  45. Liu J, Luo J, Ye H, Sun Y, Lu Z, Zeng X. 2010. In vitro and in vivo antioxidant activity of exopolysaccharides from endophytic bacterium Paenibacillus polymyxa EJS-3. Carbohydr. Polym. 82: 1278-1283. https://doi.org/10.1016/j.carbpol.2010.07.008
  46. Ahmed Z, Wang Y, Anjum N, Ahmad A, Khan ST. 2013. Characterization of exopolysaccharide produced by Lactobacillus kefiranofaciens ZW3 isolated from Tibet kefir-Part II. Food Hydrocoll. 30: 343-350. https://doi.org/10.1016/j.foodhyd.2012.06.009
  47. Luang-In V, Saengha W, Deeseenthum, S. 2018. Characterization and bioactivities of a novel exopolysaccharide produced from lactose by Bacillus tequilensis PS21 isolated from Thai milk kefir. Microbiol. Biotechnol. Lett. 46: 9-17. https://doi.org/10.4014/mbl.1712.12018

Cited by

  1. Psychobiotic Effects of Multi-Strain Probiotics Originated from Thai Fermented Foods in a Rat Model vol.40, pp.6, 2020, https://doi.org/10.5851/kosfa.2020.e72