DOI QR코드

DOI QR Code

High Purification of Hg2Br2 Powder for Acousto-Optic Tunable Filters Utilizing a PVT Process

PVT공정을 이용한 음향광학 가변 필터용 Hg2Br2 파우더의 고순도 정제

  • Kim, Tae Hyeon (Department of Advanced Material Engineering, Chungbuk National University) ;
  • Lee, Hee Tae (Optical Material Group, Green Optics) ;
  • Kwon, In Hoi (Optical Material Group, Green Optics) ;
  • Kang, Young-Min (Optical Material Group, Green Optics) ;
  • Woo, Shi-Gwan (Space Optics R&D, Green Optics) ;
  • Jang, Gun-Eik (Department of Advanced Material Engineering, Chungbuk National University) ;
  • Cho, Byungjin (Department of Advanced Material Engineering, Chungbuk National University)
  • 김태현 (충북대학교 신소재공학과) ;
  • 이희태 (그린광학 광학소재그룹) ;
  • 권인회 (그린광학 광학소재그룹) ;
  • 강영민 (그린광학 광학소재그룹) ;
  • 우시관 (그린광학 우주광학연구소) ;
  • 장건익 (충북대학교 신소재공학과) ;
  • 조병진 (충북대학교 신소재공학과)
  • Received : 2018.10.25
  • Accepted : 2018.11.27
  • Published : 2018.12.27

Abstract

We develop a purification process of $Hg_2Br_2$ raw powders using a physical vapor transport(PVT) process, which is essential for the fabrication of a high performance acousto-optic tunable filter(AOTF) module. Specifically, we characterize and compare three $Hg_2Br_2$ powders: $Hg_2Br_2$ raw powder, $Hg_2Br_2$ powder purified under pumping conditions, and $Hg_2Br_2$ powder purified under vacuum sealing. Before and after purification, we characterize the powder samples through X-ray diffraction and X-ray photoelectron spectroscopy. The corresponding results indicate that physical properties of the $Hg_2Br_2$ compound are not damaged even after the purification process. The impurities and concentration in the purified $Hg_2Br_2$ powder are evaluated by inductively coupled plasma-mass spectroscopy. Notably, compared to the sample purified under pumping conditions, the purification process under vacuum sealing results in a higher purity $Hg_2Br_2$ (99.999 %). In addition, when the second vacuum sealing purification process is performed, the remaining impurities are almost removed, giving rise to $Hg_2Br_2$ with ultra-high purity. This high purification process might be possible due to independent control of impurities and $Hg_2Br_2$ materials under the optimized vacuum sealing. Preparation of such a highly purified $Hg_2Br_2$ materials will pave a promising way toward a high-quality $Hg_2Br_2$ single crystal and then high performance AOTF modules.

Keywords

References

  1. N. Gupta, Acousto-optics and Photoacoustics, 5953, 59530O (2005).
  2. J. S. Kim, S. B. Trivedi, J. Soos, N. Gupta and W. Palosz, J. Cryst. Growth, 310, 2457 (2008). https://doi.org/10.1016/j.jcrysgro.2007.12.067
  3. P. M. Amarasinghe, J. S. Kim, H. Chen, S. Trivedi, S. B. Qadri, J. Soos, M. Diestler, D. Zhang, N. Gupta, J. L. Jensen and J. Jensen, J. Cryst. Growth, 450, 96 (2016). https://doi.org/10.1016/j.jcrysgro.2016.06.025
  4. J.-S. Kim, S. B. Trivedi, J. Soos, N. Gupta and W. Palosz, Imaging Spectrometry XII, 6661, 66610B (2007).
  5. N. Gupta, R. Dahmani and S. Choy, Opt. Eng, 41, 1033 (2002). https://doi.org/10.1117/1.1467936
  6. S. E. Harris and R. W. Wallace, J. Opt. Soc. Am., 59, 744 (1969). https://doi.org/10.1364/JOSA.59.000744
  7. I. C. Chang, Acousto-Optics: Device Dev. Instrum. Appl., 90, 12 (1976).
  8. N. Gupta and V. Voloshinov, Opt. Soc. Am., 30, 985 (2005).
  9. J. S. Werner and B. E. Schefrin, Handbook of Optics (2000).
  10. J. Xu, R. Stroud, Wiley-Interscience, Vol. 12, New York (1992).
  11. N. B. Singh, M. Gottlieb and A. Goutzoulis, J. Cryst. Growth, 82, 274 (1987). https://doi.org/10.1016/0022-0248(87)90314-9
  12. D. J. Knuteson, Opt. Eng, 46, 064001 (2007). https://doi.org/10.1117/1.2744369
  13. N. B. Singh, R. H. Hopkins, R. Mazelsky and J. J. Conroy, J. Cryst. Growth, 75, 173 (1986). https://doi.org/10.1016/0022-0248(86)90238-1
  14. Y. M. Tairov and V. F. Tsvetkov, J. Cryst. Growth, 43, 209 (1978). https://doi.org/10.1016/0022-0248(78)90169-0
  15. N. B. Singh, M. Gottlieb, A. P. Goutzoulis, R. H. Hopkins and R. Mazelsky, J. Cryst. Growth, 89, 527 (1988). https://doi.org/10.1016/0022-0248(88)90215-1
  16. T. Ding, J. R. Zhang, J. M. Hong, J. J. Zhu and H. Y. Chen, J. Cryst. Growth, 260, 527 (2004). https://doi.org/10.1016/j.jcrysgro.2003.08.063
  17. S. B. Rahane, R. M. Hensarling, B. J. Sparks, C. M. Stafford and D. L. Patton, J. Mater. Chem, 22, 932 (2012). https://doi.org/10.1039/C1JM14762E
  18. H. R. Thirsk, Proc. Phys. Soc. B, 66, 129 (1953).