DOI QR코드

DOI QR Code

Element Analysis related to Mobility and Stability of ZTO Thin Film using the CO2 Gases

이산화탄소를 이용한 ZTO 박막의 이동도와 안정성분석

  • Oh, Teresa (Department of Semiconductor Engineering, Cheongju University)
  • Received : 2018.04.19
  • Accepted : 2018.11.30
  • Published : 2018.12.27

Abstract

The transfer characteristics of zinc tin oxide(ZTO) on silicon dioxide($SiO_2$) thin film transistor generally depend on the electrical properties of gate insulators. $SiO_2$ thin films are prepared with argon gas flow rates of 25 sccm and 30 sccm. The rate of ionization of $SiO_2$(25 sccm) decreases more than that of $SiO_2$(30 sccm), and then the generation of electrons decreases and the conductivity of $SiO_2$(25 sccm) is low. Relatively, the conductivity of $SiO_2$(30 sccm) increases because of the high rate of ionization of argon gases. Therefore, the insulating performance of $SiO_2$(25 sccm) is superior to that of $SiO_2$(30 sccm) because of the high potential barrier of $SiO_2$(25 sccm). The $ZTO/SiO_2$ transistors are prepared to research the $CO_2$ gas sensitivity. The stability of the transistor of $ZTO/SiO_2$(25 sccm) as a high insulator is superior owing to the high potential barrier. It is confirmed that the electrical properties of the insulator in transistor devices is an important factor to detect gases.

Keywords

References

  1. K. Nomura, T. Kamiya, H. Ohta, M. Hirano and H. Hosono, Appl. Phys. Lett., 93, 192107 (2008). https://doi.org/10.1063/1.3020714
  2. S. Akasaka, K. Tamura, K. Nakahara, T. Tanabe, A. Kamisawa and M. Kawasaki1, Appl. Phys. Lett., 93, 123309 (2008). https://doi.org/10.1063/1.2989125
  3. T. Oh and C. H. Kim, J. Nanosci. Nanotechnol., 16, 2096 (2016). https://doi.org/10.1166/jnn.2016.12023
  4. F. Liu, Y. Zhou, Y. Wang, X. Liu, J. Wang and H. Guo, Quantum Mater., 1, 16004 (2016). https://doi.org/10.1038/npjquantmats.2016.4
  5. S. W. Tsao, T. C. Chang, S. Y. Huang, M. C. Chen, S. C. Chen, C. T. Tsai, Y. J. Kuo, Y. C. Chen and W. C. Wub, Solid-State Electron., 54, 1497 (2010). https://doi.org/10.1016/j.sse.2010.08.001
  6. S. Akasaka, K. Tamura, K. Nakahara, T. Tanabe, A. Kamisawa and M. Kawasaki1, Appl. Phys. Lett., 93, 123309 (2008). https://doi.org/10.1063/1.2989125
  7. A. Suresh and J. F. Muth, Appl. Phys. Lett., 92, 033502 (2008). https://doi.org/10.1063/1.2824758
  8. T. Oh, Electron. Mater. Lett., 11, 853 (2015). https://doi.org/10.1007/s13391-015-4505-3
  9. J. Maserjian, J. Vac. Sci. Technol., 11, 996 (1974). https://doi.org/10.1116/1.1318719
  10. J. Maserjian and N. Zamani, Appl. Phys. Lett., 53, 559 (1982).
  11. T. Oh, Korean J. Mater. Res., 25, 1149 (2015).
  12. C. S. Han and S. W. Kim, Korean J. Mater. Res., 28, 12 (2018). https://doi.org/10.3740/MRSK.2018.28.1.12
  13. T. Oh, Japanese J. Appl. Phys., 45, 264 (2006). https://doi.org/10.1143/JJAP.45.264