DOI QR코드

DOI QR Code

Properties and Fabrication of Glass Fiber using Recycled Slag Materials

슬래그 재활용 원료를 이용한 유리섬유 제조 및 특성

  • Lee, Ji-Sun (Korea Institute of Ceramic Engineering and Technology, Optic & Display Material Center) ;
  • Kim, Sun-Woog (Korea Institute of Ceramic Engineering and Technology, Optic & Display Material Center) ;
  • Ra, Yong-Ho (Korea Institute of Ceramic Engineering and Technology, Optic & Display Material Center) ;
  • Lim, Tae-Young (Korea Institute of Ceramic Engineering and Technology, Optic & Display Material Center) ;
  • Lee, Youngjin (Korea Institute of Ceramic Engineering and Technology, Optic & Display Material Center) ;
  • Jeon, Dae-Woo (Korea Institute of Ceramic Engineering and Technology, Optic & Display Material Center) ;
  • Kim, Jin-Ho (Korea Institute of Ceramic Engineering and Technology, Optic & Display Material Center)
  • 이지선 (한국세라믹기술원 광.디스플레이소재센터) ;
  • 김선욱 (한국세라믹기술원 광.디스플레이소재센터) ;
  • 라용호 (한국세라믹기술원 광.디스플레이소재센터) ;
  • 임태영 (한국세라믹기술원 광.디스플레이소재센터) ;
  • 이영진 (한국세라믹기술원 광.디스플레이소재센터) ;
  • 전대우 (한국세라믹기술원 광.디스플레이소재센터) ;
  • 김진호 (한국세라믹기술원 광.디스플레이소재센터)
  • Received : 2018.10.04
  • Accepted : 2018.12.04
  • Published : 2018.12.27

Abstract

In this study, glass fibers are fabricated via a continuous spinning process using manganese slag, steel slag, and silica stone. To fabricate the glass fibers, raw materials are put into an alumina crucible, melted at $1550^{\circ}C$ for 2 hrs, and then annealed at $600^{\circ}C$ for 2 hrs. We obtain a black colored glass. We identify the non-crystalline nature of the glass using an XRD(x-ray diffractometer) graph. An adaptable temperature for spinning of the bulk marble glass is characterized using a high temperature viscometer. Spinning is carried out using direct melting spinning equipment as a function of the fiberizing temperature in the range of $1109^{\circ}C$ to $1166^{\circ}C$, while the winder speed is in the range of 100rpm to 250rpm. We investigate the various properties of glass fibers. The average diameters of the glass fibers are measured by optical microscope and FE-SEM. The average diameter of the glass fibers is $73{\mu}m$ at 100rpm, $65{\mu}m$ at 150rpm, $55{\mu}m$ at 200rpm, and $45{\mu}m$ at 250rpm. The mechanical properties of the fibers are confirmed using a UTM(Universal materials testing machine). The average tensile strength of the glass fibers is 21MPa at 100rpm, 31MPa at 150rpm, 34MPa at 200rpm, and 45MPa at 250rpm.

Keywords

References

  1. T. H. Lee and S. J. KIM, Korean J. Met. Mater., 35, 1146 (1997).
  2. J. H. Lim and S.W. Lee, Korean J. Met. Mater., 41, 102 (2004).
  3. D. J. Min, Korean J. Met. Mater., 33, 1205 (1995).
  4. F. Tomiokan and H. Suito : Testzu-to-Hagane, 260 (1992).
  5. F. T. Wallenberger, R. Naslain, J. B. Machesney and H. D. Ackler, Advanced Inorganic Fibers: Process, Structures, Properties, Aplications, p. 149 Netherlands (2000).
  6. F. T. Wallenberger, R. Naslain, J. B. Machesney and H. D. Ackler, Advanced Inorganic Fibers: Process, Structures, Properties, Aplications, p. 93 Netherlands (2000).
  7. B. H. Kim, Glass Technology, Chungmungak, 3, p. 431, Chungmungak Korea (2009).
  8. H. Iba and Y. Kagawa, Compos. Sci. Technol, 62, 2042 (2002).
  9. F. T. Wallenberger, R. Naslain, J. B. Machesney, And H. D. Ackler, Advanced Inorganic Fibers: Process, Structures, Properties, Aplications, p. 132, Netherlands (2000).
  10. Q. Zheng and J. C. Mauro, J. Am. Ceram. Soc., 100, 7 (2017).
  11. J. S. Lee and J. H. Kim, Korean. J. Mater. Res., 27, 45 (2017).
  12. M. C. Weinberg, J. Am. Ceram. Soc., 48, 269 (1991).
  13. C. S. Ray, X. Fang and D. E. Day, J. Am. Ceram. Soc., 83, 865 (2000).
  14. T. S. Kim, D. S. Kil, H. S. June, E. H. Kang and S. S. Yoon, Anal. Sci. Technol., 13, 775 (2000).
  15. B. H. Kim, Glass technology, Chungmungak, 3, p. 393, Chungmungak Korea (2009).