DOI QR코드

DOI QR Code

Radiation Flux Impact in High Density Residential Areas - A Case Study from Jungnang area, Seoul -

고밀도 주거지역에서의 복사플럭스 영향 연구 - 서울시 중랑구 지역을 대상으로 -

  • YI, Chae-Yeon (Research Center for Atmospheric Environment, Hankuk University of Foreign Studies) ;
  • KWON, Hyuk-Gi (Research Center for Atmospheric Environment, Hankuk University of Foreign Studies) ;
  • Lindberg, Fredrik (Dept. of Earth Sciences, University of Gothenburg)
  • Received : 2018.11.05
  • Accepted : 2018.11.21
  • Published : 2018.12.31

Abstract

The purpose of this study was to verify the reliability of the solar radiation model and discuss its applicability to the urban area of Seoul for summer heat stress mitigation. We extended the study area closer to the city scale and enhanced the spatial resolution sufficiently to determine pedestrian-level urban radiance. The domain was a $4km^2$ residential area with high-rise building sites. Radiance modelling (SOLWEIG) was performed with LiDAR (Light Detection and Ranging)-based detailed geomorphological land cover shape. The radiance model was evaluated using surface energy balance (SEB) observations. The model showed the highest accuracy on a clear day in summer. When the mean radiation temperature (MRT) was simulated, the highest value was for a low-rise building area and road surface with a low shadow effect. On the other hand, for high-rise buildings and vegetated areas, the effect of shadows was large and showed a relatively low value of mean radiation temperature. The method proposed in this study exhibits high reliability for the management of heat stress in urban areas at pedestrian height. It is applicable for many urban micro-climate management functions related to natural and artificial urban settings; for example, when a new urban infrastructure is planned.

본 연구는 도시지역을 대상으로 태양복사모델링을 수행하고 검증하여, 도시 내 열스트레스 완화에 대한 적용 가능성을 논의하였다. 이를 위해 연구지역은 항공 LiDAR 자료를 기반으로 실제 건물과 식생의 형태와 높이가 구현되었고, 보행자높이에서의 단파 및 장파복사 플럭스가 모의될 수 있도록 해상도를 향상시켰다. 고층 및 저층 건물이 고밀도로 존재하는 주거지역 $4km^2$에서 SOLWEIG 모델을 이용하여 복사플럭스를 모의하고, 지표에너지수지시스템의 Net radiometer를 이용한 복사플럭스 관측자료로 검증하였다. 그 결과 여름철 맑은 날 가장 높은 정확도를 나타냈고, 같은 날에 대한 평균복사온도를 모의한 결과, 그림자영향이 적은 저층 건물지역과 도로표면에서 가장 높은 수치를 나타냈으며, 고층 건물지역과 식생지역에서는 그림자의 영향으로 상대적으로 낮은 수치를 나타냈다. 본 연구에서 제안된 방법은 보행자높이에서 도시 내 열스트레스 지역 관리를 위한 높은 신뢰도를 보여주었다. 더욱 확장되고 있는 도시재생 및 재개발에 있어서, 새로운 주거환경을 도입하기 위해 도시 기반시설을 계획할 때 자연 및 인공 도시환경 설정과 관련된 많은 기능이 적용될 수 있다.

Keywords

References

  1. Akbari, H., M. Pomerantz and H. Taha. 2001. Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas. Solar Energy 70(3):295-310. https://doi.org/10.1016/S0038-092X(00)00089-X
  2. An, S.M., B.S. Kim, H.Y. Lee, C.H. Kim, C. Yi, J.H. Eum and J.H. Woo. 2014. Three-dimensional point cloud-based sky view factor analysis in complex urban settings. International Journal of Climatology 34(8):2685-2701. https://doi.org/10.1002/joc.3868
  3. An, S.M., H.G. Son, K.S. Lee and C. Yi. 2016a. A study of the urban tree canopy mean radiant temperature mitigation estimation. Journal of the Korean Institute of Landscape Architecture 44(1):93-106. https://doi.org/10.9715/KILA.2016.44.1.093
  4. An, S.M., S.J. Kim and H.C. Lee. 2016b. A Study on the Urban Area Micro climate Management Direction. KRIHS.
  5. ASHRAE. 2001. ASHRAE Fundamentals Handbook 2001 (SI Edition) American Society of Heating, Refrigerating, and Air Conditioning Engineers, ISBN: 1883413885.
  6. Jaenicke, B., F. Meier, F. Lindberg, S. Schubert and D. Scherer. 2016. Towards a city-wide analysis of mean radiant temperature at high spatial resolution: An example from Berlin, Germany. Urban, 1151:15.
  7. Kim, K.R., C. Yi, J.S. Lee, F. Meier, B. Jaenicke, U. Fehrenbach and D. Scherer. 2014. BioCAS: Biometeorological climate impact assessment system for buildingscale impact assessment of heat-stress related mortality. Die Erde, 145:62.
  8. Konarska, J., F. Lindberg, A. Larsson, S. Thorsson and B. Holmer. 2014. Transmissivity of solar radiation through crowns of single urban trees-application for outdoor thermal comfort modelling. Theoretical and Applied Climatology 117(3-4):363-376. https://doi.org/10.1007/s00704-013-1000-3
  9. Kwon, T.H., M.S. Park, C. Yi and Y.J. Choi. 2014. Effects of different averaging operators on the urban turbulent fluxes. Atmosphere-Korea 24(2):197-206. https://doi.org/10.14191/Atmos.2014.24.2.197
  10. Lindberg, F. and C.S.B. Grimmond. 2011. The influence of vegetation and building morphology on shadow patterns and mean radiant temperature in urban areas: model development and evaluation. Theoretical and Applied Climatology 105: 311-323. https://doi.org/10.1007/s00704-010-0382-8
  11. Lindberg, F., B. Holmer and S. Thorsson. 2008. SOLWEIG 1.0 - Modelling spatial variations of 3D radiant fluxes and mean radiant temperature in complex urban settings. International Journal of Biometeorology 52:697-713. https://doi.org/10.1007/s00484-008-0162-7
  12. Lindberg, F., S. Onomura and C.S.B. Grimmond. 2016. Influence of ground surface characteristics on the mean radiant temperature in urban areas. International Journal of Biometeorology 60(9):1439-1452. https://doi.org/10.1007/s00484-016-1135-x
  13. Lindberg, F., C.S.B. Grimmond, A. Gabey, B. Huang, C. W. Kent, Theeuwes Sun, N.E., Jarvi, L., H.C. Ward, I. Capel- Timms and Chang, Y. 2018. Urban Multi -scale Environmental Predictor(UMEP): An integrated tool for city-based climate services. Environmental Modelling & Software 99:70-87. https://doi.org/10.1016/j.envsoft.2017.09.020
  14. Ministry of Environment. 2011. Statistics on land / natural environment.
  15. Park, M.S., S.H. Park, J.H. Chae, M.H. Choi, Y. Song, M. Kang and J.W. Roh. 2017. High-resolution urban observation network for user-specific meteorological information service in the Seoul Metropolitan Area, South Korea. Atmospheric Measurement Techniques 10(4).
  16. Ratti, C. and P. Richens. 1999. Urban texture analysis with image processing techniques. In Computers in Building. Springer, Boston, MA.
  17. SOLWEIG(2013) A climate design tool, User manual for version 2013a. Urban Climate Group, Department of Earth Sciences, University of Gothenburg Sweden.
  18. Stewart, I.D. and T.R. Oke. 2012. Local climate zones for urban temperature studies. Bulletin of the American Meteorological Society 93(12):1879-1900. https://doi.org/10.1175/BAMS-D-11-00019.1
  19. VDI. 1994. VDI 3789, Part 2: Environmental meteorology, interactions between atmosphere and surfaces; calculation of the short- and long wave radiation. Beuth, Berlin. pp. 52.
  20. Wang, Z., C.B. Schaaf, A.H. Strahler, M.J. Chopping, M.O. Roman, Y. Shuai, C.E. Woodcock, D.Y. Hollinger and D.R. Fitzjarrald. 2014. Evaluation of MODIS albedo product(MCD43A) over grassland, agriculture and forest surface types during dormant and snow-covered periods. Remote Sensing of Environment 140:60-77. https://doi.org/10.1016/j.rse.2013.08.025
  21. Yi, C., S.M. An, K. Kim, H.G. Kwon and J.S. Min. 2016. Surface micro-climate analysis based on urban morphological characteristics: temperature deviation estimation and evaluation. Atmosphere-Korea 26(3):445-459. https://doi.org/10.14191/Atmos.2016.26.3.445
  22. Yi, C., K.R. Kim, S.M. An, Y.J. Choi, A. Holtmann, B. Jaenicke, U. Fehrenbach and D. Scherer. 2016. Estimating spatial patterns of air temperature at buildingresolving spatial resolution in Seoul, Korea. International Journal of Climatology 36(2):533-549. https://doi.org/10.1002/joc.4363
  23. Yi, C., Y. Shin and S.M. An. 2017. A study on a comparison of sky view factors and a correlation with air temperature in the city. Atmosphere-Korea 27(4):483-498.
  24. Yi, C., S.M. An, K.R. Kim, Y.J. Choi and D. Scherer. 2012. Improvement of air temperature analysis by precise spatial data on a local-scale: a case study of Eunpyeong New-town in Seoul. Journal of the Korean association of geographic information studies 15(1):144-158. https://doi.org/10.11108/kagis.2012.15.1.144