DOI QR코드

DOI QR Code

Evaluation of polymerization ability of resin-based materials used for teeth splinting

레진계 치아 스플린팅 재료들의 중합능력 평가

  • Lee, Jeong-Gil (Department of Conservative Dentistry, College of Dentistry, Gangneung-Wonju National University) ;
  • Kim, Soo-Yeon (Department of Conservative Dentistry, College of Dentistry, Gangneung-Wonju National University) ;
  • Lee, Jae-Kwan (Department of Periodontology, Research Institute for Oral Sciences, College of Dentistry, Gangneung-Wonju National University) ;
  • Kim, Jin-Woo (Department of Conservative Dentistry, College of Dentistry, Gangneung-Wonju National University) ;
  • Park, Se-Hee (Department of Conservative Dentistry, College of Dentistry, Gangneung-Wonju National University) ;
  • Cho, Kyung-Mo (Department of Conservative Dentistry, College of Dentistry, Gangneung-Wonju National University)
  • 이정길 (강릉원주대학교 치과대학 치과보존학교실) ;
  • 김수연 (강릉원주대학교 치과대학 치과보존학교실) ;
  • 이재관 (강릉원주대학교 치과대학 치주과학교실) ;
  • 김진우 (강릉원주대학교 치과대학 치과보존학교실) ;
  • 박세희 (강릉원주대학교 치과대학 치과보존학교실) ;
  • 조경모 (강릉원주대학교 치과대학 치과보존학교실)
  • Received : 2018.10.20
  • Accepted : 2018.11.12
  • Published : 2018.12.31

Abstract

Purpose: The aim of this study was to evaluate the polymerization ability of resin-based materials used for teeth splinting according to the thickness of cure. Materials and Methods: For this study, the Light-Fix and G-FIX developed for resinous splinting materials and the G-aenial Universal Flo, the high-flowable composite resin available as restorative and splinting material, were used. Ten specimens of the thickness of 2, 3, 4 and 5 mm and 5 mm in diameter for each composite resin (total 120) were prepared. The microhardness of top and bottom surfaces for each specimen was measured by the Vickers hardness testing machine. The polymerization ability of the composite resin for each thickness was statistically analyzed using independent T-test at a 0.05 level of significance. Results: There was no difference of polymerization ability regardless of the thickness in the Light-Fix and G-FIX. The G-aenial Universal Flo showed significantly low polymerization ability from the thickness of the 3 mm (P < 0.05). Conclusion: The Light-Fix and G-FIX, which are resin-based materials used for teeth splinting, are expected to be suitable for light curing up to 5 mm in thickness.

목적: 본 연구의 목적은 치아 스플린팅에 사용되는 레진계 재료들의 두께에 따른 중합 능력을 평가하는 것이다. 연구 재료 및 방법: 레진계 스플린팅 재료로 개발된 Light-Fix와 G-FIX, 수복용과 스플린트용으로 사용 가능한 고흐름성 복합레진인 G-aenial Universal Flo를 사용하여 직경 5 mm, 두께 2, 3, 4, 5 mm의 시편을 각각 10개씩(총 120개) 제작하였다. 비커스 경도 측정기를 이용하여 시편 상면과 하면의 미세경도값을 측정하였다. 각 두께에서 복합레진의 중합정도를 95% 유의수준에서 independent T-test를 이용하여 통계적으로 분석하였다. 결과: Light-Fix와 G-FIX는 두께에 상관없이 중합도의 차이를 보이지 않았다. G-aenial Universal Flo는 3 mm 두께부터 유의하게 낮은 중합도를 보였다. 결론: 스플린팅 전용 레진계 재료인 Light-Fix와 G-FIX는 5 mm 두께까지 적절한 광중합이 가능할 것으로 사료된다.

Keywords

References

  1. Bernal G, Carvajal JC, Munoz-Viveros CA. A Review of the Clinical Management of Mobile Teeth. J Contemp Dent Pract 2002;3:10-22.
  2. Watts A, Addy M. Tooth discolouration and staining: a review of the literature. Br Dent J 2001;190:309-16. https://doi.org/10.1038/sj.bdj.4800959
  3. Ferencz JL. Splinting. Dent Clin North Am 1987;31:383-93.
  4. Smales RJ, Webster DA. Restoration deterioration related to later failure. Oper Dent 1993;18:130-7.
  5. Burcak Cengiz S, Stephan Atac A, Cehreli ZC. Biomechanical effects of splint types on traumatized tooth: a photoelastic stress analysis. Dent Traumatol 2006;22:133-8. https://doi.org/10.1111/j.1600-9657.2006.00339.x
  6. Oikarinen K. Comparison of the flexibility of various splinting methods for tooth fixation. Int J Oral Maxillofac Surg 1988;17:125-7. https://doi.org/10.1016/S0901-5027(88)80166-8
  7. Andreasen JO, Andreasen FM, Mejare I, Cvek M. Healing of 400 intra-alveolar root fractures. 2. Effect of treatment factors such as treatment delay, repositioning, splinting type and period and antibiotics. Dent Traumatol 2004;20:203-11. https://doi.org/10.1111/j.1600-9657.2004.00278.x
  8. Neaverth EJ, Georig AC. Technique and rationale for splinting. J Am Dent Assoc 1980;100:56-63. https://doi.org/10.14219/jada.archive.1980.0026
  9. Kahler B, Heithersay GS. An evidence-based appraisal of splinting luxated, avulsed and rootfractured teeth. Dent Traumatol 2008;24:2-10. https://doi.org/10.1111/j.1600-9657.2006.00480.x
  10. Mazzoleni S, Meschia G, Cortesi R, Bressan E, Tomasi C, Ferro R, Stellini E. In vitro comparison of the flexibility of different splint systems used in dental traumatology. Dent Traumatol 2010;26:30-6. https://doi.org/10.1111/j.1600-9657.2009.00843.x
  11. Liu X, Zhang Y, Zhou Z, Ma S. Retrospective study of combined splinting restorations in the aesthetic zone of periodontal patients. Br Dent J 2016;220:241-7. https://doi.org/10.1038/sj.bdj.2016.178
  12. Aggstaller H, Beuer F, Edelhoff D, Rammelsberg P, Gernet W. Long-term clinical performance of resin-bonded fixed partial dentures with retentive preparation geometry in anterior and posterior areas. J Adhes Dent 2008;10:301-6.
  13. Ferracane JL. Correlation between hardness and degree of conversion during the setting reaction of unfilled dental restorative resins. Dent Mater 1985;1:11-4. https://doi.org/10.1016/S0109-5641(85)80058-0
  14. Vankerckhoven H, Lambrechts P, van Beylen M, Davidson CL, Vanherle G. Unreacted Methacrylate Groups on the Surfaces of Composite Resins. J Dent Res 1982;61:791-5. https://doi.org/10.1177/00220345820610062801
  15. Cook WD, Standish PM. Cure of resin based restorative materials. II. White light photopolymerized resins. Aust Dent J 1983;28:307-11. https://doi.org/10.1111/j.1834-7819.1983.tb02491.x
  16. Goncalves F, Pfeifer CC, Stansbury JW, Newman SM, Braga RR. Influence of matrix composition on polymerization stress development of experimental composites. Dent Mater 2010;26:697-703. https://doi.org/10.1016/j.dental.2010.03.014
  17. Pilo R, Cardash HS. Post-irradiation polymerization of different anterior and posterior visible lightactivated resin composites. Dent Mater 1992;8:299-304. https://doi.org/10.1016/0109-5641(92)90104-K
  18. Hofmann N, Papsthart G, Hugo B, Klaiber B. Comparison of photo-activation versus chemical or dual-curing of resin-based luting cements regarding flexural strength, modulus and surface hardness. J Oral Rehabil 2001;28:1022-8. https://doi.org/10.1046/j.1365-2842.2001.00809.x
  19. Asmussen E. Factors affecting the quantity of remaining double bonds in restorative resin polymers. Scand J Dent Res 1982;90:490-6.
  20. Rueggeberg FA, Craig RG. Correlation of parameters used to estimate monomer conversion in a light-cured composite. J Dent Res 1988;67:932-7. https://doi.org/10.1177/00220345880670060801
  21. Abed YA, Sabry HA, Alrobeigy NA. Degree of conversion and surface hardness of bulk-fill composite versus incremental-fill composite. Tanta Dent J 2015;12:71-80. https://doi.org/10.1016/j.tdj.2015.01.003
  22. Moraes LG, Rocha RS, Menegazzo LM, de Areaujo EB, Yukimiti K, Moraes JC. Infrared spectroscopy: a tool for determination of the degree of conversion in dental composites. J Appl Oral Sci 2008;16:145-9. https://doi.org/10.1590/S1678-77572008000200012
  23. Gajewski VE, Pfeifer CS, Froes-Salgado NR, Boaro LC, Braga RR. Monomers used in resin composites: degree of conversion, mechanical properties and water sorption/solubility. Braz Dent J 2012;23:508-14. https://doi.org/10.1590/S0103-64402012000500007
  24. Cook WD. Factors affecting the depth of cure of UVpolymerized composites. J Dent Res 1980;59:800-8. https://doi.org/10.1177/00220345800590050901
  25. DeWald JP, Ferracane JL. A comparison of four modes of evaluating depth of cure of light-activated composites. J Dent Res 1987;66:727-30. https://doi.org/10.1177/00220345870660030401
  26. Asmussen E. Restorative resins: hardness and strength vs. quantity of remaining double bonds. Scand J Dent Res 1982;90:484-9.
  27. Noh T, Song E, Park S, Pyo A, Kwon Y, Kim J, Kim S, Jeong T. Comparison of the Mechanical Properties between Bulk-fill and Conventional Composites. J Korean Acad Pediatr Dent 2016;43:365-73.
  28. Fonseca RB, de Almeida LN, Mendes GA, Kasuya AV, Favarao IN, de Paula MS. Effect of short glass fiber/filler particle proportion on flexural and diametral tensile strength of a novel fiber-reinforced composite. J Prosthodont Res 2016;60:47-53. https://doi.org/10.1016/j.jpor.2015.10.004
  29. Ilie N, Jelen E, Clementino-Luedemann T, Hickel R. Low-shrinkage composite for dental application. Dent Mater J 2007;26:149-55. https://doi.org/10.4012/dmj.26.149
  30. Loguercio AD, Reis A, Schroeder M, Balducci I, Versluis A, Ballester RY. Polymerization shrinkage: effects of boundary conditions and filling technique of resin composite restorations. J Dent 2004;32:459-70. https://doi.org/10.1016/j.jdent.2004.02.010
  31. de Gee AJ, ten Harkel-Hagenaar E, Davidson CL. Color dye for identification of incompletely cured composite resins. J Prosthet Dent 1984;52:626-31. https://doi.org/10.1016/0022-3913(84)90129-X
  32. Son SA, Kim HC, Hur B, Seol HJ, Kwon YH, Kim HI, Park JK. Influence of Resin Thickness on the Degree of Conversion and Microhardness of Silorane-based Composite Resin. Korea J Dent Mater 2012;39:57-64.
  33. Hofmann N, Papsthart G, Hugo B, Klaiber B. Comparison of photo-activation versus chemical or dual-curing of resin-based luting cements regarding flexural strength, modulus and surface hardness. J Oral Rehabil 2001;28:1022-8. https://doi.org/10.1046/j.1365-2842.2001.00809.x
  34. Ruyter IE, Oysaed H. Conversion in different depths of ultraviolet and visible light activated composite materials. Acta Odontol Scand 1982;40:179-92. https://doi.org/10.3109/00016358209012726
  35. Yoo JI, Kim SY, Batbayar B, Kim JW, Park SH, Cho KM. Comparison of flexural strength and modulus of elasticity in several resinous teeth splinting materials. J Dent Rehabil Appl Sci 2016;32:169-75. https://doi.org/10.14368/jdras.2016.32.3.169