DOI QR코드

DOI QR Code

Anti-aging Effects of Rosa damascena Extract Containing Low Molecular Glycoprotein

저분자 당단백을 함유하는 다마스크 장미추출물의 항노화 효과

  • Received : 2018.02.28
  • Accepted : 2018.03.24
  • Published : 2018.03.31

Abstract

In this study, we investigated the anti-aging effect of Rosa damascena extract containing low molecular glycoprotein (RELG) converted from the high molecular glycoprotein by bioconversion. Free radical scavenging activities were performed by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. Antioxidant activities ($IC_{50}$) of RELG and the positive control ascorbic acid were $22.6{\mu}g/mL$ and $21.1{\mu}g/mL$, respectively. For skin cells, $15{\mu}g/mL$ RELG showed 28% antioxidant activity by inhibiting the production of active oxygen species induced by ultraviolet ray and hydrogen peroxide. $15{\mu}g/mL$ RELG prevented 10% the cell death caused by stress in human hair follicle dermal papilla cells (HDPC) and reduced 90% the production of active oxygen species. In addition, the glycoprotein showed not only anti-wrinkle effect but also moisturizing effect by 48% inhibition of matrix metallo proteinase-1 (MMP-1) production by ultraviolet stress and $10{\mu}g/mL$ RELG enhanced 10% neutral lipid synthesis with 44% aquaporin 3 (AQP3) expression, which is moisture factor. In conclusion, the RELG can be used as an anti-aging cosmetic material.

본 연구에서는 다마스크 장미 내 고분자 당단백을 bioconversion 기술을 이용하여 저분자화한 다마스크 장미추출물(Rosa damascena extract containing low molecular glycoprotein, RELG)의 항노화 효능을 측정하였다. DPPH 라디칼 소거능을 이용한 RELG의 항산화능 평가($IC_{50}$)는 $22.6{\mu}g/mL$으로 양성대조군인 ascorbic acid $21.1{\mu}g/mL$와 비교하여 비슷한 수준의 항산화능을 나타내었고 피부세포실험에서는 $15{\mu}g/mL$에서 자외선과 $H_2O_2$에 의한 활성산소 생성을 28% 억제하였다. 또한 같은 농도에서 자외선에 의한 콜라겐 분해효소(MMP-1)의 생성을 48% 억제하고 $10{\mu}g/mL$에서 대조군 대비 보습인자인 aquaporin 3 (AQP3)의 발현을 44%, 중성지질 생합성을 10% 촉진하여 항주름 효능과 더불어 보습효능까지 나타냈다. 추가적으로 두피 모유두세포에서는 스트레스로 인한 세포사멸을 $15{\mu}g/mL$에서 10% 억제하고 활성산소의 생성을 90% 감소시켰다. 본 연구 결과, RELG는 효과적인 항노화 화장품 소재임을 확인하였다.

Keywords

References

  1. A. K. Balin and R. G. Allen, Mechanism of biologic aging. Dermatol. Clin., 4(3), 347 (1986).
  2. M. Podda and M. Grundmann-Kollmann, Low molecular weight antioxidants and their role in skin ageing. Clin. Exp. Dermatol., 26(7), 578 (2001). https://doi.org/10.1046/j.1365-2230.2001.00902.x
  3. F. Liebel, S. Kaur, E. Ruvolo, N. Kollias, and M. D. Southall, Irradiation of skin with visible light induces reactive oxygen species and matrix-degrading enzymes. J. Invest. Dermatol., 132(7), 1901 (2012). https://doi.org/10.1038/jid.2011.476
  4. L. Rittie and G. J. Fisher, UV-light-induced signal cascades and skin aging. Ageing Res. Rev., 1(4), 705 (2002). https://doi.org/10.1016/S1568-1637(02)00024-7
  5. L. S. King, D. Kozono, and P. Agre, From structure to disease: the evolving tale of aquaporin biology. Nat. Rev. Mol. Cell Biol., 5(9), 687 (2004). https://doi.org/10.1038/nrm1469
  6. Z. Nemes and P. M. Steinert, Bricks and mortar of the epidermal barrier. Exp. Mol. Med., 31(1), 5 (1999). https://doi.org/10.1038/emm.1999.2
  7. S. M. Staufenbiel, B. W. Penninx, A. T. Spijker, B. M. Elzinga, and E. F. van Rossum, Hair cortisol, stress exposure, and mental health in humans: a systematic review. Psychoneuroendocrinology, 38(8), 1220 (2013). https://doi.org/10.1016/j.psyneuen.2012.11.015
  8. R. M. Trueb, Oxidative stress in ageing of hair. Int. J. Trichology, 1(1), 6 (2009). https://doi.org/10.4103/0974-7753.51923
  9. M. H. Boskabady, M. N. Shafei, Z. Saberi, and S. Amini, Pharmacological effects of Rosa damascena, Iran J. Basic Med. Sci., 14(4), 295 (2011).
  10. M. O. Yang, E. J. Cho, and J. H. Ha, Chemical composition of rose petals (Rosa hybrida L.) as a food material, J. Korean Soc. Food Sci. Nutr., 31(3), 539 (2002). https://doi.org/10.3746/jkfn.2002.31.3.539
  11. C. Cahoreau, D. Klett, and Y. Combarnous, Structure-function relationships of glycoprotein hormones and their subunits' ancestors, Front Endocrinol (Lausanne)., ecollection (2015).
  12. M. Shylaja and H. S. Seshadri, Glycoprotein: An overview, Biochemical education, 17(4), 170 (1989). https://doi.org/10.1016/0307-4412(89)90136-2
  13. J. M. Losada and M. Herrero, Pollen tube access to the ovule is mediated by glycoprotein secretion on the obturator of apple, Ann. Bot., 119(6), 989 (2017).
  14. A. Schieber, K. Mihalev, N. Berardini, P. Mollov, and R. Carle, Flavonol glycosides from distilled petals of Rosa damascena Mill., Z. Naturforsch, C., 60(5-6), 379 (2005).
  15. T. B. Ng, Z. F. Pi, H. Yue, L. Zhao, M. Fu, L. Li, J. Hou, L. S. Shi, R. R. Chen, Y. Jiang, and F. Lui, A polysaccharopeptide complex and a condensed tannin with antioxidant activity from dried rose (Rosa rugosa) flowers, J. Pharm Pharmacol., 58(4), 529 (2006). https://doi.org/10.1211/jpp.58.4.0013
  16. K. S. Heo and K. T. Lim, Antioxidative effects of glycoprotein isolated from Solanum nugrum L., J. Med. Food, 7(3), 349 (2004). https://doi.org/10.1089/jmf.2004.7.349
  17. A. K. Saha and C. F. Brewer, Determination of the concentrations of oligosaccharides, complex type carbohydrates, and glycoproteins using the phenol-sulfuric acid method, Carbohydr. Res. 254, 157 (1994). https://doi.org/10.1016/0008-6215(94)84249-3
  18. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, Protein measurement with the Folin-phenol reagent. J. Biol. Chem., 193(1), 265 (1951).
  19. M. S. Blois, Antioxidant determinations by the use of a stable free radical, Nature, 181(4617), 1199 (1958). https://doi.org/10.1038/1811199a0
  20. H. Wang and J. A. Joseph, Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader, Free Radic. Biol. Med., 27(5), 612 (1999). https://doi.org/10.1016/S0891-5849(99)00107-0
  21. Y. Rong, Z. Geng and B. H. Lau, Ginkgo biloba attenuates oxidative stress in macrophages and endothelial cells, Free Radic. Biol. Med., 20(1), 121 (1996). https://doi.org/10.1016/0891-5849(95)02016-0
  22. K. J. Cho, Y. S. Lee, and B. H. Ryu, Antitumor effect and immunology activity of seaweeds toward sarcoma-180, Bull. Korean Fish. Soc., 23(5), 345 (1990).
  23. Prabu K. and Natarajan E., Isolation and FTIR spectroscopy characterization of chitin from local sources, Adv. Appl. Sci., 3(2), 1870 (2012).
  24. M. Lee, D. Huh, D. Jo, G. Lee, and S. Yoon, Flavonoids components and functional properties of citrus peel hydrolysate, J. Korean Soc. Food Sci. Nutr., 36(11), 1358 (2007). https://doi.org/10.3746/jkfn.2007.36.11.1358
  25. M. Pinelo-Jiménez and A. S. Meyer, Enzyme-assisted extraction of antioxidants: release of phenols from vegetal matrixes, Electron. J. Environ. Agric. Food Chem., 7(8), 3217 (2008).
  26. K. H. Kim, K. T. Kim, Y. H. Kim, G. Kim, C. S. Han, S. H. Park, and B. Y. Lee, Preparation of oligo hyaluronic acid by hydrolysis and its application as a cosmetic ingredient, J. Soc. Cosmet. Sci. Korea, 33(3), 189 (2007).
  27. Y. S. Soh, Hyaluronic acid; properties and applications, Polym. Korea, 12(6), 484 (1988).
  28. E. J. Shin, J. W. Park, J. W. Choi, J. Y. Seo, and Y. I. Park, Effects of molecular weights of sodium hyaluronate on the collagen synthesis, anti-inflammation and transdermal absorption, J. Soc. Cosmet. Sci. Korea, 42(3), 235 (2016). https://doi.org/10.15230/SCSK.2016.42.3.235