ON m-ISOMETRIC TOEPLITZ OPERATORS

EUNGIL KO AND JONGRAK LEE

Abstract. In this paper, we study m-isometric Toeplitz operators T_φ with rational symbols. We characterize m-isometric Toeplitz operators T_φ by properties of the rational symbols φ. In addition, we give a necessary and sufficient condition for Toeplitz operators T_φ with analytic symbols φ to be m-expansive or m-contractive. Finally, we give some results for m-expansive and m-contractive Toeplitz operators T_φ with trigonometric polynomial symbols φ.

1. Introduction

Let $\mathcal{L}(\mathcal{H})$ be the algebra of bounded linear operators on a separable complex Hilbert space \mathcal{H}. In 1990’s, Agler and Stankus [2] intensively studied the following operators; for a fixed positive integer m, we denote

$$B_m(T) = \sum_{j=0}^{m} (-1)^{m-j} \binom{m}{j} T^{*j}T^j$$

for an operator $T \in \mathcal{L}(\mathcal{H})$. We say that $T \in \mathcal{L}(\mathcal{H})$ is m-expansive if $B_m(T) \leq 0$ for some positive integer m. In particular, if $B_m(T) = 0$, then T is said to be m-isometric. When $B_m(T) \geq 0$, we say that T is m-contractive.

The class of m-isometric operators has been widely investigated in latest years. In [1], J. Agler characterized subnormality with the positivity of $B_m(T)$ and also extended his results to the concept of m-isometric operators. The theory of these operators was investigated especially by Agler and Stankus [2–4]. In these papers, they developed a theory for the m-isometric operators with rich connections to Toeplitz operators and function theory. Recently, there has been worked on products of m-isometries [6] and m-isometric composition operators [17]. Many researchers have extensively studied the isometric Toeplitz operators in various ways; see [11–13] and the references therein. Based on these papers, we are studying the m-isometric Toeplitz operators.

Received January 11, 2017; Revised July 6, 2017; Accepted October 17, 2017.
2010 Mathematics Subject Classification. 47A62, 47B15, 47B20.

Key words and phrases. m-isometric operators, expansive operators, contractive operators, Toeplitz operators.

This work was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(2009-0093827).

©2018 Korean Mathematical Society

367
A function $\theta \in H^\infty$ satisfies $|\theta| = 1$ a.e. on \mathbb{T} is an inner function. If θ is an inner function, the degree of θ, denoted by $\deg \theta$, is defined as $n + s$ if θ is a finite Blaschke product of the form

$$
\theta(z) = e^{i\xi} z^n \prod_{j=1}^{n} \frac{z - \alpha_j}{1 - \overline{\alpha}_j z} \quad (|\alpha_j| < 1 \text{ for } j = 1, 2, \ldots, n),
$$

otherwise the degree of θ is infinite. For an inner function θ, write

$$
\mathcal{H}(\theta) := H^2 \ominus \theta H^2.
$$

In [14], it was shown that if $f \in H^\infty$ is a rational function, then we can write

$$
f = \theta a,
$$

where θ is a finite Blaschke product and $a \in H^\infty$ satisfies that the inner parts of a and θ are coprime. For φ in $L^\infty(\mathbb{T})$ of the unit circle $\mathbb{T} = \partial \mathbb{D}$, the Toeplitz operator T_φ with symbol φ on the Hardy space $H^2(\mathbb{T})$ is given by

$$
T_\varphi f := P(\varphi f) \quad (f \in H^2(\mathbb{T})),
$$

where P denotes the orthogonal projection of $L^2(\mathbb{T})$ onto $H^2(\mathbb{T})$.

If φ, ψ are in $L^\infty(\mathbb{T})$, then it is well-known that

1) $T_{\varphi + \psi} = T_\varphi + T_\psi$,
2) $T_{\varphi}^* = T_{\overline{\varphi}}$,
3) $T_{\varphi} T_{\psi} = T_{\varphi \psi}$ if φ or ψ is analytic.

These properties enable us to establish several consequences of m-isometric operators.

This paper is organized as follows. In Section 2, we study some properties of m-isometric Toeplitz operators. In particular, we give several results for the m-isometric Toeplitz operators with rational symbols. In Section 3, we establish some results for the m-expansive and m-contractive Toeplitz operators.

2. m-isometric operators

First, we briefly recall the definitions and some elementary properties of Toeplitz operators and m-isometric operators. We refer the reader to [2–4, 8] for further references.

Given a positive integer m, it follows from definition that an operator $T \in \mathcal{L}(\mathcal{H})$ is an m-isometry if and only if

$$
\sum_{j=0}^{m} (-1)^{m-j} \binom{m}{j} |T^j x|^2 = 0 \text{ for all } x \in \mathcal{H}.
$$

The above formulation was used to define m-isometries on a Banach space by Sid Ahmed [5] and by Botelho [7] on l_p spaces and general function spaces.
Using the identity (2.1) and the Toeplitz operator with symbol φ, we consider the following equation
\[(2.2) \quad \sum_{j=0}^{m} (-1)^{m-j} \binom{m}{j} |T_{\varphi}^j k|^2 = 0\]
for all $k \in H^2(T)$.

In [8], A. Brown and P. R. Halmos characterize isometric Toeplitz operators T_{φ} by properties of the symbols φ.

Lemma 2.1 ([8]). A Toeplitz operator T_{φ} is an isometric operator if and only if φ is inner.

We recapture the following lemma for the convenience of the readers.

Lemma 2.2 ([2]). If T is an m-isometry, then it is an $m + 1$-isometry.

Proof. If T is an m-isometry, then $B_m(T) = 0$ from (1.1). Since $B_{m+1}(T) = T^* T_m(T) T - B_m(T)$, $B_{m+1}(T) = 0$. Hence T is an $m + 1$-isometry. This completes the proof. □

Next, we give several results of m-isometric Toeplitz operators. The following results are the consequences of m-isometric Toeplitz operators with rational symbols.

Lemma 2.3. If a Toeplitz operator T_{φ} with rational symbols φ is an m-isometry, then φ is analytic.

Proof. Suppose that $\varphi(z) = f + \overline{g}$ is a rational function. Then we can write
\[f(z) = \theta_1 \overline{a} \quad \text{and} \quad g(z) = \theta_2 \overline{b}\]
for some finite Blaschke products θ_1 and θ_2, where $a \in H(\theta_1)$ and $b \in H(\theta_2)$.

Since T_{φ} is an m-isometry,
\[\sum_{j=0}^{m} (-1)^{m-j} \binom{m}{j} T_{\varphi}^j T_{\varphi}^j k = 0\]
holds for all $k \in H^2(T)$. Put $k(z) = c$ for some nonzero constant c. Then
\[\sum_{j=0}^{m} (-1)^{m-j} \binom{m}{j} T_{\varphi}^j T_{\varphi}^j c = 0\]

\[= \sum_{j=0}^{m} (-1)^{m-j} \binom{m}{j} T_{\overline{f} + g}^j T_{\overline{f} + g}^j c\]

\[= T_{\overline{f} + g}^m T_{\overline{f} + g}^m c - m T_{\overline{f} + g}^{m-1} T_{\overline{f} + g}^{-1} c + \cdots + (-1)^{m-1} T_{\overline{f} + g} T_{\overline{f} + g} c + (-1)^m c.\]

Since the maximal degree term of the above relation is included only in $T_{\overline{f} + g}^m T_{\overline{f} + g}^m c$ term and the maximal degree term $c \theta_1^m \theta_2^m a^m \overline{b}^m$ must be a zero,
we have either f or g is zero. If $f = 0$, i.e., $\varphi = \overline{g}$, then for some nonzero constant $c \in H^2(T)$,

$$0 = \sum_{j=0}^{m} (-1)^{m-j} \binom{m}{j} T^*_j T_j^j c$$

$$= \sum_{j=0}^{m} (-1)^{m-j} \binom{m}{j} T^*_j T_j^j g c$$

$$= (-1)^{m} c,$$

we have a contradiction. Therefore $g = 0$ and hence φ is analytic. This completes the proof. □

Recall that $T \in \mathcal{L}(\mathcal{H})$ is said to be subnormal if T has a normal extension, i.e., $T = N|_{\mathcal{H}}$, where N is a normal operator on some Hilbert space $\mathcal{K} \supseteq \mathcal{H}$ such that \mathcal{H} is invariant for N. From Lemma 2.3, we get the following corollary immediately.

Corollary 2.4. Every m-isometric Toeplitz operators T_φ with rational symbols φ is subnormal.

We next show that every m-isometric Toeplitz operators with rational symbol is an isometry.

Theorem 2.5. Let φ be a rational function. A Toeplitz operator T_φ is an m-isometry if and only if T_φ is an isometry.

Proof. If T_φ is an m-isometry, Lemma 2.3 ensures that φ is analytic. Put $\varphi = f$ where $f \in H^\infty$. Then

$$T_\varphi^m T_\varphi = T_f^m T_f = T_f^m f_{m-j}.$$

Hence

$$0 = \sum_{j=0}^{m} (-1)^{m-j} \binom{m}{j} T_f^j T^*_f$$

$$= \sum_{j=0}^{m} (-1)^{m-j} \binom{m}{j} T^*_f f_j$$

$$= T \sum_{j=0}^{m} (-1)^{m-j} \binom{m}{j} f_{m-j}$$

$$= T f_{(m-1)^{m}}.$$

Thus $\overline{f} f = 1$, or equivalently, $\varphi \overline{\varphi} = 1$ and by Lemma 2.1, T_φ is an isometry. The converse implication is trivial by Lemma 2.2. □

From Theorem 2.5, we get the following results.
Corollary 2.6. Suppose that φ is a rational function. If T_φ and T^*_φ are m-isometric operators, then T_φ is unitary and $\sigma(T_\varphi) \subset \partial \mathbb{D}$.

Corollary 2.7. Suppose that φ is a rational function. Then T_φ is an m-isometry if and only if φ is a finite Blaschke product.

Proof. If T_φ is an m-isometry, then it is a symmetry from Theorem 2.5. Hence it follows from Lemma 2.1 that φ is inner. Since φ is rational, φ is a finite Blaschke product. □

As some applications of m-isometric Toeplitz operators, we talk about the hyponormal Toeplitz operators. Hyponormal operators are closely connected to m-isometric operators; see [9,18]. Recall that $T \in \mathcal{L}(\mathcal{H})$ is said to be hyponormal if its self-commutator $[T^*, T] := T^*T - TT^* \geq 0$. As considering Toeplitz operators with symbol $\varphi \in L^\infty(T)$, the relationship between the positivity of the self-commutator $[T^*_\varphi, T_\varphi]$ and the symbol φ was solved by C. Cowen [10] in 1988.

Lemma 2.8 (Cowen’s Theorem [10]). For $\varphi \in L^\infty(T)$, write
\[\mathcal{E}(\varphi) := \{ k \in H^\infty(T) : \|k\|_\infty \leq 1 \text{ and } \varphi - k\varphi \in H^\infty(T) \}. \]

Then T_φ is hyponormal if and only if $\mathcal{E}(\varphi)$ is nonempty.

The following lemma is a result on hyponormal Toeplitz operators with a finite rank self-commutator.

Lemma 2.9 (Nakazi-Takahashi Theorem [16]). A Toeplitz operator T_φ is hyponormal and $[T^*_\varphi, T_\varphi]$ is a finite rank operator if and only if there exists a finite Blaschke product k in $\mathcal{E}(\varphi)$. In this case, we can choose k such that $\deg(k) = \text{rank}[T^*_\varphi, T_\varphi]$.

Using Lemma 2.9, authors in [14] characterized the rank of self-commutator as follows.

Lemma 2.10 ([14]). Let $\varphi = \bar{g} + f \in L^\infty$, where f and g are in H^2. If φ is of bounded type and T_φ is hyponormal, then
\[\text{rank}[T^*_\varphi, T_\varphi] = \min\{\deg(k) : k \text{ is an inner function in } \mathcal{E}(\varphi)\}. \]

Next, we deduced the rank of self-commutator of m-isometric Toeplitz operators.

Theorem 2.11. Suppose that T_φ is an m-isometric Toeplitz operator with rational symbols. Then $\deg(\varphi) = \text{rank}[T^*_\varphi, T_\varphi]$.

Proof. By Corollary 2.4, T_φ is subnormal and hence hyponormal. Since T_φ is m-isometric, from Corollary 2.7, φ is a finite Blaschke product. Put $\varphi = \theta$ where θ is a finite Blaschke product. Thus if $k \in \mathcal{E}(\varphi)$ is inner, then $k = \varphi(0)h$ for some $h \in H^\infty (0 \in \mathcal{E}(\varphi))$. By Lemma 2.10, $\text{rank}[T^*_\varphi, T_\varphi] = \deg(\theta) = \deg(\varphi)$. This completes the proof. □
Example 2.12. Suppose that \(\varphi \) is a finite Blaschke product of the form \(\varphi(z) = \prod_{j=1}^{n} \frac{z - \alpha_j}{1 - \bar{\alpha}_j z} \) (\(|\alpha_j| < 1\) for \(j = 1, 2, \ldots, n \)). Then \([T_\varphi^*, T_\varphi] = T_\varphi^* T_\varphi - T_\varphi T_\varphi^* = I - T_\varphi T_\varphi^* \). By Theorem 2.11, \(\text{rank}(I - T_\varphi T_\varphi^*) = \deg(\varphi) = n \).

3. Expansive and contractive operators

In this section, we study the \(m \)-expansive and \(m \)-contractive Toeplitz operators with trigonometric polynomial symbols.

It follows from definition that for \(\varphi \in L^\infty(\mathbb{T}) \), a Toeplitz operator \(T_\varphi \) is \(m \)-expansive if and only if

\[
(3.1) \quad \sum_{j=0}^{m} (-1)^{m-j} \left(\begin{array}{c} m \\ j \end{array} \right) \| T_\varphi^j k \|^2 \leq 0 \quad \text{for all } k \in H^2(\mathbb{T})
\]

and \(m \)-contractive if and only if

\[
(3.2) \quad \sum_{j=0}^{m} (-1)^{m-j} \left(\begin{array}{c} m \\ j \end{array} \right) \| T_\varphi^j k \|^2 \geq 0 \quad \text{for all } k \in H^2(\mathbb{T})
\]

By definition of expansive operators and properties of Toeplitz operators, the following lemma is easily checked.

Lemma 3.1. For \(\varphi \in L^\infty(\mathbb{T}) \),

(i) \(T_\varphi \) is expansive if and only if \(\| \varphi \|_\infty \leq 1 \);

(ii) \(T_\varphi \) is contractive if and only if \(\| \varphi \|_\infty \geq 1 \).

Proof. (i) Suppose that \(\| \varphi \|_\infty \leq 1 \). Let \(\varphi = f + \overline{g} \) with \(f, g \in H^\infty \). Then

\[
\| T_\varphi^j k \|^2 = \| P(\varphi k) \|^2 \leq \| \varphi k \|^2 \leq \| \varphi \|_\infty \| k \|^2 \leq \| k \|^2.
\]

Hence \(T_\varphi \) is expansive. Conversely, suppose that \(T_\varphi \) is expansive, i.e., \(\| T_\varphi^j k \|^2 \leq \| k \|^2 \) for all \(k \in H^2 \). Then \(\| T_\varphi \| \leq 1 \). Since \(\| T_\varphi \| = \| \varphi \|_\infty \), \(\| \varphi \|_\infty \leq 1 \).

(ii) Since \(T_\varphi \) is contractive if and only if \(B(T) \geq 0 \), we get the result with the same method. This complete the proof.

Theorem 3.2. Suppose that \(T_\varphi \) is a Toeplitz operator with trigonometric polynomial symbol \(\varphi = f + \overline{g} \) where \(f, g \in H^\infty(\mathbb{T}) \). If \(T_\varphi \) is 2-expansive, then \(|f| = 1 \) and \(P(\overline{g} f) = 0 \).

Proof. Suppose that \(\varphi(z) = f + \overline{g} \) where \(f, g \in H^\infty(\mathbb{T}) \). Put \(k(z) = \sum_{i=0}^{\infty} c_i z^i \). Then we have

\[
\| T_\varphi k \|^2 = \| P(f k + \overline{g} k) \|^2 = \| f k + P(\overline{g} k) \|^2
\]

and

\[
\| T_\varphi^2 k \|^2 = \| f^2 k + f P(\overline{g} k) + P(\overline{g} f k) + P(\overline{g} P(\overline{g} k)) \|^2.
\]

From the relation (3.1), \(T_\varphi \) is 2-expansive if and only if

\[
(3.3) \quad \| f^2 k + f P(\overline{g} k) + P(\overline{g} f k) + P(\overline{g} P(\overline{g} k)) \|^2 - 2\| f k + P(\overline{g} k) \|^2 + |k|^2 \leq 0
\]
for all $k \in H^2(T)$. Put $k(z) = c$ for some nonzero constant c. Then from (3.3) we have
\[|cf^2 + cP(\overline{gf})|^2 - 2|cf|^2 + |c|^2 \leq 0 \]
or equivalently,
\[|cf^2|^2 + |cP(\overline{gf})|^2 + 2\text{Re}(cf^2, cP(\overline{gf})) - 2|cf|^2 + |c|^2 \leq 0. \]
Since $\text{Re}(cf^2, cP(\overline{gf})) \leq |c|^2 |f|^2 ||P(\overline{gf})||$, we have
\[|c|^2 ((|f|^2 - 1)^2 + |P(\overline{gf})|^2 + 2|f|^2 ||P(\overline{gf})||) \leq 0. \]
Hence if T_φ is 2-expansive, then $||f|| = 1$ and $P(\overline{gf}) = 0$. \(\square\)

In the following example, we show that the converse of Theorem 3.2 does not hold.

Example 3.3. Suppose that $\varphi(z) = f + \overline{g} = 1 + z$. Then $||f|| = 1$ and $P(\overline{gf}) = 0$. But for $k(z) = 1 + z$, a straightforward calculation shows that
\[|T_\varphi k|^2 - 2||T_\varphi k||^2 + |k|^2 = 2 > 0. \]
Therefore T_φ is not 2-expansive. Hence the converse of Theorem 3.2 does not hold.

Corollary 3.4. Suppose that $\varphi(z) = \sum_{n=-N}^{N} a_n z^n$ with $a_N \neq 0$ where $||\varphi||_{\infty} \leq 1$. Then T_φ is expansive but not 2-expansive.

Proof. From Lemma 3.1, it is obvious that T_φ is expansive. Set $f(z) = \sum_{n=0}^{N} a_n z^n$ and $g(z) = \sum_{n=1}^{N} a_{-n} z^n$. Since $P(\overline{gf}) \neq 0$, T_φ is not 2-expansive from Theorem 3.2. \(\square\)

Corollary 3.5. Suppose that T_φ is hyponormal with polynomial symbols and 2-expansive if and only if $\varphi \in H^\infty(T)$ with $||\varphi|| = 1$.

Proof. For $\varphi = f + \overline{g}$, if T_φ is hyponormal, then $\deg f \geq \deg g$. From Theorem 3.2, if T_φ is 2-expansive, then $||f|| = 1$ and $P(\overline{gf}) = 0$. Set $f(z) = \sum_{n=0}^{N} a_n z^n$ and $g(z) = \sum_{n=1}^{N} a_{-n} z^n$ with $N \geq m$ and $a_N a_{-m} \neq 0$. Since
\[P(\overline{gf}) = P \left(\sum_{n=0}^{N} a_n z^n \cdot \sum_{n=1}^{m} a_{-n} z^n \right) = P \left(\sum_{i=0}^{N} \sum_{j=0}^{m} a_i \overline{a_j} z^i \overline{z^j} \right) \]
$P(\overline{gf}) = 0$ if and only if $a_N \overline{a_j} = 0$ for some nonzero a_j, which is a contradiction. Hence we conclude that $g = 0$, and so $\varphi = f$ with $||\varphi|| = 1$. Conversely, suppose that $\varphi \in H^\infty$ with $||\varphi|| = 1$. Then T_φ is hyponormal. And from Lemmas 2.1 and 2.2, T_φ is a 2-isometry and hence 2-expansive. This completes the proof. \(\square\)

Next, we consider the m-expansive Toeplitz operators with analytic symbols.

Theorem 3.6. Suppose that φ is analytic. Then

(i) If m is even, then T_φ is m-expansive if and only if T_φ is an isometry;
(ii) If m is odd, then T_{φ} is m-expansive if and only if $|\varphi| \leq 1$. In particular, if $|\varphi| = 1$, then T_{φ} is an isometry.

Proof. (i) Clearly T_{φ} is an m-isometry implies T_{φ} is m-expansive. If $\varphi(z)$ is an analytic, then from the relation (1.1), we have

$$
\sum_{j=0}^{m} (-1)^{m-j} \binom{m}{j} T_{\psi}^j T_{\varphi}^j = \sum_{j=0}^{m} \binom{m}{j} T_{\varphi}^j
$$

$$
= T_{\sum_{j=0}^{m} (-1)^{m-j} \binom{m}{j} \overline{\varphi}^j}
$$

$$
= T_{(\overline{\varphi}^j-1)^m}.
$$

Since T_{φ} is m-expansive, we have

$$
\langle P((\overline{\varphi}^j-1)^m k), k \rangle \leq 0
$$

for all $k \in H^2(\mathbb{T})$. Hence

$$
\langle P((\overline{\varphi}^j-1)^m k), k \rangle = \langle (\overline{\varphi}^j-1)^m k, k \rangle = ||(\overline{\varphi}^j-1)^m k||^2 \leq 0.
$$

Hence we have that $||(\overline{\varphi}^j-1)^m k||^2 \leq 0$ if and only if $|\varphi| = 1$. Moreover, by Lemma 2.1, T_{φ} is an isometry.

(ii) From the inequality (3.4), T_{φ} is m-expansive if and only if

$$
\langle P((\overline{\varphi}^j-1)^m k), k \rangle \leq 0.
$$

Applying the H"older-McCarthy inequality introduced in [15], we have

$$
\langle (\overline{\varphi}^j-1)^m k, k \rangle \leq ||k||^{2(m-1)}(\overline{\varphi}^j-1)^m k, k).
$$

Hence T_{φ} is m-expansive if and only if $|\varphi| \leq 1$. This complete the proof. □

Corollary 3.7. Every subnormal and m-expansive Toeplitz operator is an isometry where m is a positive even number.

Corollary 3.8. Suppose that φ is analytic. If T_{φ} is m-expansive, then $\|T_{\varphi}\| \leq 1$.

Proof. Since $\|T_{\varphi}\| = |\varphi|_\infty$, the proof follows from Theorem 3.6. □

Example 3.9. Suppose that $\varphi(z) = (\frac{a-z}{1-\overline{a}z})$ where $\alpha, \overline{\alpha} \in \mathbb{C}$. By Theorem 3.6, for every positive even number m, T_{φ} is m-expansive, and T_{φ} is an m-isometry if and only if $|\alpha| = 1$. But from Lemma 3.1 and Theorem 3.6, T_{φ} is expansive (contractive) if and only if $|\alpha| \leq 1$ ($|\alpha| \geq 1$), respectively.

Now, we study m-contractive Toeplitz operators with trigonometric polynomial symbols. The following result is necessary and sufficient conditions for the 2-contractive Toeplitz operators with coanalytic inner symbol.

Proposition 3.10. Suppose that $\varphi(z) = a_k z^k$. Then T_{φ} is 2-contractive if and only if $|a_k| \leq \frac{1}{\sqrt{2}}$.
Proof. From the relation (3.2) for $m = 2$, put $k(z) = \sum_{i=0}^{\infty} c_i z^i$ ($c_i \in \mathbb{C}$ $(i = 0, 1, 2, \ldots)$). Then
\[
|T_\varphi k|^2 = \left\| a_{-k} \sum_{i=k}^{\infty} c_i z^{i+k} \right\|^2 = |a_{-k}|^2 \sum_{i=k}^{\infty} |c_i|^2
\]
and
\[
|T_\varphi^2 k|^2 = \left\| P \left(a_{-k} \sum_{i=2k}^{\infty} c_i z^{i+2k} \right) \right\|^2 = |a_{-k}|^4 \sum_{i=2k}^{\infty} |c_i|^2.
\]
Hence, T_φ is 2-contractive if and only if
\[
\|T_\varphi^2 k\|^2 - 2|T_\varphi k|^2 + |k|^2
\]
\[
= |a_{-k}|^4 \sum_{i=2k}^{\infty} |c_i|^2 - 2|a_{-k}|^2 \sum_{i=k}^{\infty} |c_i|^2 + \sum_{i=0}^{\infty} |c_i|^2
\]
\[
= \sum_{i=2k}^{\infty} |c_i|^2 (|a_{-k}|^2 - 1)^2 + \sum_{i=k}^{\infty} |c_i|^2 (-2|a_{-k}|^2 + 1) + \sum_{i=0}^{\infty} |c_i|^2 \geq 0
\]
for all $c_i \in \mathbb{C}$ $(i = 0, 1, 2, \ldots)$, or equivalently,
\[
|a_{-k}| \leq \frac{1}{\sqrt{2}}.
\]
This completes the proof. \(\square\)

Corollary 3.11. Suppose that $\varphi(z) = a_{-k}z^k$. Then T_φ is never 2-expansive.

Proof. We argue by contradiction. Suppose that T_φ is 2-expansive. Put $k(z) = c_0 (c_0 \neq 0)$. Then from the same arguments in proof of Proposition 3.10,
\[
\|T_\varphi^2 k\|^2 - 2|T_\varphi k|^2 + |k|^2 = |c_0|^2 > 0.
\]
Therefore we can conclude a contradiction. \(\square\)

The following result is a consequence of 2-contractive Toeplitz operators with trigonometric polynomial symbols.

Proposition 3.12. Suppose that $\varphi(z) = a_1 z + \overline{a_{-1} z}$ ($a_{-1} \neq 0$). If T_φ is 2-contractive, then
\[
(|a_1|^2 - 1)^2 + |a_{-1}|^2 (3|a_1|^2 - 2) \geq 0.
\]

Proof. Put $k(z) = \sum_{i=0}^{\infty} c_i z^i$. Then from (3.2), we have
\[
|T_\varphi k|^2 = \left\| a_1 \sum_{i=0}^{\infty} c_i z^{i+1} + \overline{a_{-1}} \sum_{i=1}^{\infty} c_i z^{i-1} \right\|^2
\]
\[
= |a_1|^2 \sum_{i=0}^{\infty} |c_i|^2 + |a_{-1}|^2 \sum_{i=1}^{\infty} |c_i|^2 + 2 \Re \left\{ a_1 \overline{a_{-1}} \sum_{i=1}^{\infty} c_i \overline{c}_{i+2} \right\},
\]
\[
= |a_1|^2 \sum_{i=0}^{\infty} |c_i|^2 + |a_{-1}|^2 \sum_{i=1}^{\infty} |c_i|^2 + 2 |a_1|^2 \sum_{i=1}^{\infty} |c_i|^2 + 2 |a_{-1}|^2 \sum_{i=1}^{\infty} |c_i|^2 + 4 \Re \left\{ a_1 \overline{a_{-1}} \sum_{i=1}^{\infty} c_i \overline{c}_{i+2} \right\}.
\]
and
\[|T_\varphi^2 k|^2 = \left\| P((a_1 z + a_{-1}) \left(a_1 \sum_{i=0}^{\infty} c_i z^{i+1} + \overline{a}_{-1} \sum_{i=1}^{\infty} c_i z^{i-1} \right) \right\|^2 \]
\[= \left\| a_1^2 \sum_{i=0}^{\infty} c_i z^{i+2} + a_1 a_{-1} \sum_{i=1}^{\infty} c_i z^t + a_1 \overline{a}_{-1} \sum_{i=0}^{\infty} c_i z^t + \overline{a}_{-1}^2 \sum_{i=2}^{\infty} c_i z^{i-2} \right\|^2 \]
\[= |a_1|^4 \sum_{i=0}^{\infty} |c_i|^2 + |a_1 a_{-1}|^2 \sum_{i=1}^{\infty} |c_i|^2 + |a_1 a_{-1}|^2 \sum_{i=1}^{\infty} |c_i|^2 \]
\[+ |a_{-1}|^4 \sum_{i=2}^{\infty} |c_i|^2 + 4 \text{Re} \left\{ |a_1|^2 a_1 a_{-1} \sum_{i=0}^{\infty} c_i \overline{c}_{i+2} \right\} \]
\[+ 2 \text{Re} \left\{ a_1 a_{-1}^2 c_1 \overline{c}_{i+1} \right\} + |a_1 a_{-1}|^2 \sum_{i=1}^{\infty} |c_i|^2 \]
\[+ 2 \text{Re} \left\{ a_1 |a_{-1}|^2 a_{-1} \sum_{i=1}^{\infty} c_i \overline{c}_{i+2} \right\} + 2 \text{Re} \left\{ a_1 |a_{-1}|^2 a_{-1} \sum_{i=0}^{\infty} c_i \overline{c}_{i+2} \right\}. \]

Put \(c_1 = 1 \) and \(c_i = 0 \) for all \(i \geq 0, \ i \neq 1 \), then
\[|T_\varphi^2 k|^2 - 2 |T_\varphi k|^2 + \| k \|^2 = |a_1|^4 - 2 |a_1|^2 + 3 |a_1 a_{-1}|^2 - 2 |a_{-1}|^2 + 1 \]
\[= (|a_1|^2 - 1)^2 + |a_{-1}|^2 (3 |a_1|^2 - 2) \geq 0. \]

This completes the proof. \(\square \)

Example 3.13. Suppose that \(\varphi(z) = \frac{1}{2} z + \overline{z} \). Then from Proposition 3.12, \(T_\varphi \) is not 2-contractive but by Lemma 3.1, it is contractive.

Next, we consider the \(m \)-contractive Toeplitz operators with analytic symbols.

Theorem 3.14. If \(\varphi \) is analytic, then \(T_\varphi \) is \(m \)-contractive where \(m \) is a positive even number.

Proof. For a positive even number \(m \), if \(\varphi(z) \) is an analytic, then from (1.1), we have
\[\sum_{j=0}^{m} (-1)^{m-j} \binom{m}{j} T_\varphi^j T_\overline{\varphi} = \sum_{j=0}^{m} (-1)^{m-j} \binom{m}{j} T_{\varphi^j \overline{\varphi}} \]
\[= T_{\sum_{j=0}^{m} (-1)^{m-j} \binom{m}{j} \overline{\varphi}^j} = T_{\overline{\varphi}^{m-1}}. \]

Hence, for a positive even number \(m \), \(T_\varphi \) is \(m \)-contractive if and only if
\[\langle P((\overline{\varphi} - 1)^m k), k \rangle \geq 0 \]
for all $k \in H^2(\mathbb{T})$. Hence
\[
\langle P((\overline{\varphi} - 1)^m k), k \rangle = \langle (\overline{\varphi} - 1)^m k, k \rangle = \langle (\overline{\varphi} - 1)^m k, (\overline{\varphi} - 1)^m k \rangle = \left\| (\overline{\varphi} - 1)^m k \right\|^2 \geq 0.
\]
This completes the proof. □

Remark 3.15. It is easy to confirm that Toeplitz operator T_φ with analytic symbols of the form $\varphi(z) = \sum_{n=0}^{N} a_n z^n$ with $\sum_{n=0}^{N} |a_n|^2 < 1$ is not contractive. Indeed, from Lemma 3.1, $a_{-k} = 0$ for all $k = 1, 2, \ldots, m$, T_φ is contractive if and only if $\sum_{n=0}^{N} |a_n|^2 \geq 1$. So we conclude that there exists a Toeplitz operator T_φ with analytic symbols that is not contractive.

Example 3.16. Consider the trigonometric polynomial
\[
\varphi(z) = z + z^2.
\]
From Lemma 3.1, T_φ is not contractive, but by Theorem 3.14, it is 2-contractive.

References

Eungil Ko
Department of Mathematics
Ewha Womans University
Seoul 120-750, Korea
Email address: eiko@ewha.ac.kr

Jongrak Lee
Institute of Mathematical Sciences
Ewha Womans University
Seoul 120-750, Korea
Email address: jrllee0124@ewha.ac.kr