DOI QR코드

DOI QR Code

EXISTENCE AND LONG-TIME BEHAVIOR OF SOLUTIONS TO NAVIER-STOKES-VOIGT EQUATIONS WITH INFINITE DELAY

  • Received : 2017.01.16
  • Accepted : 2017.08.14
  • Published : 2018.03.31

Abstract

In this paper we study the first initial boundary value problem for the 3D Navier-Stokes-Voigt equations with infinite delay. First, we prove the existence and uniqueness of weak solutions to the problem by combining the Galerkin method and the energy method. Then we prove the existence of a compact global attractor for the continuous semigroup associated to the problem. Finally, we study the existence and exponential stability of stationary solutions.

Keywords

References

  1. C. T. Anh and D. T. Quyet, g-Navier-Stokes equations with infinite delays, Vietnam J. Math. 40 (2012), no. 1, 57-78.
  2. C. T. Anh and P. T. Trang, Pull-back attractors for three dimensional Navier-Stokes-Voigt equations in some unbounded domain, Proc. Royal Soc. Edinburgh Sect. A 143 (2013), 223-251. https://doi.org/10.1017/S0308210511001491
  3. C. T. Anh and P. T. Trang, Decay rate of solutions to 3D Navier-Stokes-Voigt equations in $H^{m}$ spaces, Appl. Math. Lett. 61 (2016), 17.
  4. Y. Cao, E. M. Lunasin, and E. S. Titi, Global well-posedness of the three-dimensional viscous and inviscid simplified Bardina turbulence models, Commun. Math. Sci. 4 (2006), no. 4, 823-848. https://doi.org/10.4310/CMS.2006.v4.n4.a8
  5. T. Caraballo and X. Han, A survey on Navier-Stokes models with delays: existence, uniqueness and asymptotic behavior of solutions, Discrete Contin. Dyn. Syst. Ser. S 8 (2015), no. 6, 1079-1101. https://doi.org/10.3934/dcdss.2015.8.1079
  6. T. Caraballo, A. M. Marquez-Duran, and J. Real, Asymptotic behaviour of the three-dimensional ${\alpha}$-Navier-Stokes model with delays, J. Math. Anal. Appl. 340 (2008), no. 1, 410-423. https://doi.org/10.1016/j.jmaa.2007.08.011
  7. T. Caraballo and J. Real, Navier-Stokes equations with delays, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 457 (2001), no. 2014, 2441-2454. https://doi.org/10.1098/rspa.2001.0807
  8. T. Caraballo and J. Real, Asymptotic behaviour of Navier-Stokes equations with delays, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 459 (2003), no. 2040, 3181-3194. https://doi.org/10.1098/rspa.2003.1166
  9. M. Coti Zelati and C. G. Gal, Singular limits of Voigt models in uid dynamics, J. Math. Fluid Mech. 17 (2015), no. 2, 233-259. https://doi.org/10.1007/s00021-015-0201-1
  10. Y. Dou, X. Yang, and Y. Qin, Remarks on uniform attractors for the 3D nonautonomous Navier-Stokes-Voight equations, Bound. Value Probl. 2011 (2011), 11 pp. https://doi.org/10.1186/1687-2770-2011-11
  11. C. G. Gal and T. T. Medjo, A Navier-Stokes-Voight model with memory, Math. Methods Appl. Sci. 36 (2013), no. 18, 2507-2523. https://doi.org/10.1002/mma.2771
  12. J. Garcia-Luengo, P. Marin-Rubio, and J. Real, Pullback attractors for three-dimensional non-autonomous Navier-Stokes-Voigt equations, Nonlinearity 25 (2012), no. 4, 905-930. https://doi.org/10.1088/0951-7715/25/4/905
  13. J. Garcia-Luengo, P. Marin-Rubio, and J. Real, Regularity of pullback attractors and attraction in $H^{1}$ in arbitrarily large finite intervals for 2D Navier-Stokes equations with infinite delay, Discrete Contin. Dyn. Syst. 34 (2014), no. 1, 181-201. https://doi.org/10.3934/dcds.2014.34.181
  14. S. M. Guzzo and G. Planas, Existence of solutions for a class of Navier-Stokes equations with infinite delay, Appl. Anal. 94 (2015), no. 4, 840-855. https://doi.org/10.1080/00036811.2014.905677
  15. J. K. Hino, S. Murakami, and T. Naito, Functional Differential Equations with Infinite Delay, in: Lecture Notes in Mathematics, vol. 1473, Springer-Verlag, Berlin, 1991.
  16. V. K. Kalantarov, Attractors for some nonlinear problems of mathematical physics, Zap. Nauchn. Sem. Lenigrad. Otdel. Math. Inst. Steklov. (LOMI) 152 (1986), 50-54.
  17. V. K. Kalantarov and E. S. Titi, Global attractor and determining modes for the 3D Navier-Stokes-Voight equations, Chin. Ann. Math. Ser. B 30 (2009), no. 6, 697-714. https://doi.org/10.1007/s11401-009-0205-3
  18. H. Li and Y. Qin, Pullback attractors for three-dimensional Navier-Stokes-Voigt equations with delays, Bound. Value Probl. 2013 (2013), 17 pp. https://doi.org/10.1186/1687-2770-2013-17
  19. P. Marin-Rubio, A. M. Marquez-Duran, and J. Real, Three dimensional system of globally modified Navier-Stokes equations with infinite delays, Discrete Contin. Dyn. Syst. Ser. B 14 (2010), no. 2, 655-673. https://doi.org/10.3934/dcdsb.2010.14.655
  20. P. Marin-Rubio, A. M. Marquez-Duran, and J. Real, Pullback attractors for globally modified Navier-Stokes equations with infinite delays, Discrete Contin. Dyn. Syst. 31 (2011), no. 3, 779-796. https://doi.org/10.3934/dcds.2011.31.779
  21. P. Marn-Rubio, J. Real, and J. Valero, Pullback attractors for a two-dimensional Navier-Stokes equations in an infinite delay case, Nonlinear Anal. 74 (2011), 2012-2030. https://doi.org/10.1016/j.na.2010.11.008
  22. C. J. Niche, Decay characterization of solutions to Navier-Stokes-Voigt equations in terms of the initial datum, J. Differential Equations 260 (2016), no. 5, 4440-4453. https://doi.org/10.1016/j.jde.2015.11.014
  23. A. P. Oskolkov, The uniqueness and solvability in the large of boundary value problems for the equations of motion of aqueous solutions of polymers, Zap. Nauchn. Sem. Leningrad. Otdel. Math. Inst. Steklov. (LOMI) 38 (1973), 98-136.
  24. Y. Qin, X. Yang, and X. Liu, Averaging of a 3D Navier-Stokes-Voight equation with singularly oscillating forces, Nonlinear Anal. Real World Appl. 13 (2012), no. 2, 893-904. https://doi.org/10.1016/j.nonrwa.2011.08.025
  25. D. T. Quyet, Pullback attractors for 2D g-Navier-Stokes equations with infinite delays, Commun. Korean Math. Soc. 31 (2016), no. 3, 519-532. https://doi.org/10.4134/CKMS.c150186
  26. K. Su, M. Zhao, and J. Cao, Pullback attractors of 2D Navier-Stokes-Voigt equations with delay on a non-smooth domain, Bound. Value Probl. 2015 (2015), 27 pp. https://doi.org/10.1186/s13661-015-0285-9
  27. R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, 2nd edition, Amsterdam: North-Holland, 1979.
  28. G. Yue and C. K. Zhong, Attractors for autonomous and nonautonomous 3D Navier-Stokes-Voight equations, Discrete Contin. Dyn. Syst. Ser. B 16 (2011), no. 3, 985-1002. https://doi.org/10.3934/dcdsb.2011.16.985
  29. C. Zhao and H. Zhu, Upper bound of decay rate for solutions to the Navier-Stokes-Voigt equations in $\mathbb{R}^{3}$, Appl. Math. Comp. 256 (2015), 183-191. https://doi.org/10.1016/j.amc.2014.12.131