• Li, Lingguang (School of Mathematical Sciences Tongji University)
  • Received : 2017.01.31
  • Accepted : 2017.06.08
  • Published : 2018.03.31


In this paper, we show that the co-localization of co-Cohen Macaulay modules preserves co-Cohen Macaulayness under a certain condition. In addition, we give a characterization of co-Cohen Macaulay modules by vanishing properties of the dual Bass numbers of modules.


Supported by : National Natural Science Foundation of China, Tongji University


  1. N. T. Cuong, N. T. Dung, and L. T. Nhan, Top local cohomology and the catenaricity of the unmixed support of a finitely generated module, Comm. Algebra 35 (2007), no. 5, 1691-1701.
  2. N. T. Cuong and L. T. Nhan, On representable linearly compact modules, Proc. Amer. Math. Soc. 130 (2002), 1927-1936.
  3. N. T. Cuong and L. T. Nhan, On the Noetherian dimension of Artinian modules, Vietnam J. Math. 30 (2002), 121-130.
  4. E. Enochs and J. Z. Xu, On invariants dual to the Bass numbers, Proc. Amer. Math. Soc. 125 (1997), no. 4, 951-960.
  5. D. Kirby, Dimension and length for Artinian modules, Quart. J. Math. Oxford Ser. (2) 41 (1990), no. 164, 419-429.
  6. L. Li, Vanishing properties of dual Bass numbers, Algebra Colloq. 21 (2014), no. 1, 167-180.
  7. L. Melkersson and P. Schenzel, The co-localization of an Artinian module, Proc. Edinburgh Math. Soc. (2) 38 (1995), no. 1, 121-131.
  8. R. N. Roberts, Krull dimension for Artinian modules over quasi local commutative rings, Quart. J. Math. Oxford Ser. (2) 26 (1975), no. 103, 269-273.
  9. R. Y. Sharp, A method for the study of Artinian modules, with an application to asymptotic behaviour, In: Commutative algebra (Berkeley, CA, 1987), 443-465, Math. Sci. Res. Inst. Publ., 15, Springer, New York, 1989.
  10. Z. Tang, Co-Cohen-Macaulay modules and multiplicities for Arinian modules, J. Suzhou Univ. (natural science) 12 (1996), 15-26.
  11. Z. Tang and H. Zakeri, Co-Cohen-Macaulay modules and modules of generalized fractions, Comm. Algebra 22 (1994), no. 6, 2173-2204.