DOI QR코드

DOI QR Code

GLOBAL MAXIMAL ESTIMATE TO SOME OSCILLATORY INTEGRALS

  • Niu, Yaoming (Faculty of Mathematics Baotou Teachers' College of Inner Mongolia University of Science and Technology) ;
  • Xue, Ying (Faculty of Mathematics Baotou Teachers' College of Inner Mongolia University of Science and Technology)
  • Received : 2017.02.08
  • Accepted : 2017.12.29
  • Published : 2018.03.31

Abstract

Under the symbol ${\Omega}$ is a combination of ${\phi}_i$ ($i=1,2,3,{\ldots},n$) which has a suitable growth condition, for dimension n = 2 and $n{\geq}3$, when the initial data f belongs to homogeneous Sobolev space, we obtain the global $L^q$ estimate for maximal operators generated by operators family $\{S_{t,{\Omega}}\}_{t{\in}{\mathbb{R}}}$ associated with solution to dispersive equations, which extend some results in [27].

Keywords

References

  1. J. Bourgain, On the Schrodinger maximal functionin higher dimension, Proc. Steklov Inst. Math. 280 (2013), no. 1, 46-60; translated from Tr. Mat. Inst. Steklova 280 (2013), Ortogonalnye Ryady, Teoriya Priblizheni i Smezhnye Voprosy, 53-66. https://doi.org/10.1134/S0081543813010045
  2. J. Bourgain, A note on the Schrodinger maximal function, J. Anal. Math. 130 (2016), 393-396. https://doi.org/10.1007/s11854-016-0042-8
  3. A. Carbery, Radial Fourier multipliers and associated maximal functions, in Recent progress in Fourier analysis (El Escorial, 1983), 49-56, North-Holland Math. Stud., 111, Notas Mat., 101, North-Holland, Amsterdam.
  4. L. Carleson, Some analytic problems related to statistical mechanics, in Euclidean harmonic analysis (Proc. Sem., Univ. Maryland, College Park, Md., 1979), 5-45, Lecture Notes in Math., 779, Springer, Berlin.
  5. Y. Cho and S. Lee, Strichartz estimates in spherical coordinates, Indiana Univ. Math. J. 62 (2013), no. 3, 991-1020. https://doi.org/10.1512/iumj.2013.62.4970
  6. Y. Cho and T. Ozawa, On small amplitude solutions to the generalized Boussinesq equations, Discrete Contin. Dyn. Syst. 17 (2007), no. 4, 691-711. https://doi.org/10.3934/dcds.2007.17.691
  7. B. E. J. Dahlberg and C. E. Kenig, A note on the almost everywhere behavior of solutions to the Schrodinger equation, in Harmonic analysis (Minneapolis, Minn., 1981), 205-209, Lecture Notes in Math., 908, Springer, Berlin, 1982.
  8. C. Demeter, S. Guo, Schrodinger maximal functionin estimates the pseudocoformal transformation, arXiv:1608.07640.
  9. Q. Deng, Y. Ding, and L. Sun, Estimate for generalized unimodular multipliers on modulation spaces, Nonlinear Anal. 85 (2013), 78-92. https://doi.org/10.1016/j.na.2013.02.008
  10. Y. Ding and Y. Niu, Weighted maximal estimates along curve associated with dispersive equations, Anal. Appl. (Singap.) 15 (2017), no. 2, 225-240. https://doi.org/10.1142/S021953051550027X
  11. X. Du, L. Guth, and X. Li, A sharp Schrodinger maximal estimate in $\mathbb{R}^2$, Ann. of Math. 186 (2017), no. 2, 607-640. https://doi.org/10.4007/annals.2017.186.2.5
  12. J. Frolich and E. Lenzmann, Mean-field limit of quantum Bose gases and nonlinear Hartree equation, in Seminaire: Equations aux Derivees Partielles. 2003-2004, Exp. XIX, 26 pp, Semin. Equ. Deriv. Partielles, Ecole Polytech., Palaiseau.
  13. Z. Guo, L. Peng, and B. Wang, Decay estimates for a class of wave equations, J. Funct. Anal. 254 (2008), no. 6, 1642-1660. https://doi.org/10.1016/j.jfa.2007.12.010
  14. Z. Guo and Y. Wang, Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrodinger and wave equations, J. Anal. Math. 124 (2014), 1-38. https://doi.org/10.1007/s11854-014-0025-6
  15. C. E. Kenig, G. Ponce, and L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Amer. Math. Soc. 4 (1991), no. 2, 323-347. https://doi.org/10.1090/S0894-0347-1991-1086966-0
  16. C. E. Kenig and A. Ruiz, A strong type (2; 2) estimate for a maximal operator associated to the Schrodinger equations, Trans. Amer. Math. Soc. 280 (1983), 239-246.
  17. J. Krieger, E. Lenzmann, and P. Raphael, Nondispersive solutions to the $L^2$-critical half-wave equation, Arch. Ration. Mech. Anal. 209 (2013), no. 1, 61-129. https://doi.org/10.1007/s00205-013-0620-1
  18. N. Laskin, Fractional quantum mechanics, Phys. Rev. E 62 (2002), 3135-3145.
  19. S. Lee, On pointwise convergence of the solutions to Schrodinger equations in $\mathbb{R}^2$, Int. Math. Res. Not. 2006, Art. ID 32597, 21 pp.
  20. R. Luca and K. M. Rogers, An improved necessary condition for the Schrodinger maximal estimate, arXiv:1506.05325. https://doi.org/10.1007/s00220-016-2722-8
  21. K. M. Rogers, A local smoothing estimate for the Schrodinger equation, Adv. Math. 219 (2008), no. 6, 2105-2122. https://doi.org/10.1016/j.aim.2008.08.008
  22. K. M. Rogers, A. Vargas, and L. Vega, Pointwise convergence of solutions to the nonelliptic Schrodinger equation, Indiana Univ. Math. J. 55 (2006), no. 6, 1893-1906. https://doi.org/10.1512/iumj.2006.55.2827
  23. K. M. Rogers and P. Villarroya, Global estimates for the Schrodinger maximal operator, Ann. Acad. Sci. Fenn. Math. 32 (2007), no. 2, 425-435.
  24. P. Sjolin, Regularity of solutions to the Schrodinger equation, Duke Math. J. 55 (1987), no. 3, 699-715. https://doi.org/10.1215/S0012-7094-87-05535-9
  25. P. Sjolin, Global maximal estimates for solutions to the Schrodinger equation, Studia Math. 110 (1994), no. 2, 105-114. https://doi.org/10.4064/sm-110-2-105-114
  26. P. Sjolin, $L^{p}$ maximal estimates for solutions to the Schrodinger equation, Math. Scand. 81 (1997), no. 1, 35-68 (1998).
  27. P. Sjolin, Maximal estimates for solutions to the nonelliptic Schrodinger equation, Bull. Lond. Math. Soc. 39 (2007), no. 3, 404-412. https://doi.org/10.1112/blms/bdm024
  28. P. Sjolin, Radial functions and maximal operators of Schrodinger type, Indiana Univ. Math. J. 60 (2011), no. 1, 143-159. https://doi.org/10.1512/iumj.2011.60.4215
  29. P. Sjolin and F. Soria, Estimates for multiparameter maximal operators of Schrodinger type, J. Math. Anal. Appl. 411 (2014), no. 1, 129-143. https://doi.org/10.1016/j.jmaa.2013.09.037
  30. T. Tao, A sharp bilinear restrictions estimate for paraboloids, Geom. Funct. Anal. 13 (2003), no. 6, 1359-1384. https://doi.org/10.1007/s00039-003-0449-0
  31. T. Tao and A. Vargas, A bilinear approach to cone multipliers. II, Applications, Geom. Funct. Anal. 10 (2000), no. 1, 216-258. https://doi.org/10.1007/s000390050007
  32. L. Vega, Schrodinger equations: pointwise convergence to the initial data, Proc. Amer. Math. Soc. 102 (1988), no. 4, 874-878. https://doi.org/10.1090/S0002-9939-1988-0934859-0