DOI QR코드

DOI QR Code

Complete genome sequence of Neisseria sp. KEM232 isolated from a human smooth surface caries

사람 평활면 치아우식에서 분리한 Neisseria sp. KEM232 균주의 유전체 서열 분석

  • Kim, Eun Mi (Department of Dental Hygiene, Gwangju Health University) ;
  • Seong, Chi Nam (Department of Biology, College of Life Science and Natural Resources, Sunchon National University)
  • 김은미 (광주보건대학교 치위생과) ;
  • 성치남 (순천대학교 생명산업과학대학 생물학과)
  • Received : 2018.01.31
  • Accepted : 2018.02.05
  • Published : 2018.03.31

Abstract

We sequenced the genome of the Neisseria sp. KEM232 isolated from the smooth surface caries of human cavity of a 7-year old male in Republic of Korea by using the standard dilution plating technique. The genome comprises a single circular 2,371,912 bp chromosome with a G + C content of 58.5%, 2,210 protein-coding genes, 108 pseudo genes, 51 RNA genes, and one CRISPR array. Based on the 16S rRNA gene sequence similarity and average nucleotide identity, the strain KEM232 is most closely related to Neisseria baciliformis.

Neisseria 속 균주 KEM232는 사람 평활면 치아우식 부위로부터 분리하였다. 균주 KEM232의 유전체는 G + C 비율이 58.5%, 2,369개의 유전자와 2,210개의 단백질 코딩 유전자, 108개의 위유전자, 51개의 RNA 유전자 그리고 한 개의 CRISPR array를 포함한 단일 원형 염색체로 구성되었으며 그 크기는 2,371,912 bp였다. 균주 KEM232의 최 근연종은 Neisseria baciliformis 로서 두 균주 사이의 16S rRNA 유전자 염기서열의 유사도는 96.8% 그리고 유전체의 평균 염기 동일성은 84%였다.

Keywords

References

  1. Bennett, J.S., Bratcher, H.B., Brehony, C., Harrison, O.B., and Maiden, M.C. 2014. The genus Neisseria, pp. 881-900. In Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., and Thompson, F. (eds.), The Prokaryotes -Alphaproteobacteria and Betaproteobacteria, 4th ed. Verlag, Springer.
  2. Grissa, I., Vergnaud, G., and Pourcel, C. 2007. CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res. 35, W52-W57. https://doi.org/10.1093/nar/gkm360
  3. Liu, G., Tang, C.M., and Exley, R.M. 2015. Non-pathogenic Neisseria: members of an abundant, multi-habitat, diverse genus. Microbiology 161, 1297-1312. https://doi.org/10.1099/mic.0.000086
  4. Skerman, V.B.D., McGowan, V., and Sneath, P.H.A. 1980. Approved lists of bacterial names. Int. J. Syst. Bacteriol. 30, 225-420. https://doi.org/10.1099/00207713-30-1-225
  5. Sneath, P.H.A. and Barrett, S.J. 1996. A new species of Neisseria from the dental plaque of the domestic cow, Neisseria dentiae sp. nov. Lett. Appl. Microbiol. 23, 355-358. https://doi.org/10.1111/j.1472-765X.1996.tb00207.x
  6. Tatusova, T., DiCuccio, M., Badretdin, A., Chetvernin, V., Nawrocki, E.P., Zaslavsky, L., Lomsadze, A., Pruitt, K.D., Borodovsky, M., and Ostell, J. 2016. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 44, 6614-6624. https://doi.org/10.1093/nar/gkw569
  7. Yoon, S.H., Ha, S.M., Lim, J.M., Kwon, S.J., and Chun, J. 2017. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 110, 1281-1286. https://doi.org/10.1007/s10482-017-0844-4
  8. Zankari, E., Hasman, H., Cosentino, S., Vestergaard, M., Rasmussen, S., Lund, O., Aarestrup, F.M., and Larsen, M.V. 2012. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 67, 2640-2644. https://doi.org/10.1093/jac/dks261