DOI QR코드

DOI QR Code

Complete genome sequence of Deinococcus puniceus DY1T, a radiation resistant bacterium

방사선 내성 세균 Deinococcus puniceus DY1T의 완전한 게놈 서열 분석

  • Srinivasan, Sathiyaraj (Department of Bio & Environmental Technology, College of Natural Science, Seoul Women's University) ;
  • Sohn, Eun-Hwa (Department of Herbal Medicine Resources, Kangwon National University) ;
  • Jung, Hee-Young (School of Applied Biosciences, Kyungpook National University) ;
  • Kim, Myung Kyum (Department of Bio & Environmental Technology, College of Natural Science, Seoul Women's University)
  • 스리니바산 사티야라지 (서울여자대학교 자연과학대학 생명환경공학과) ;
  • 손은화 (강원대학교 생약자원개발학과) ;
  • 정희영 (경북대학교 농업생명과학대학 응용생명과학부 응용생물학전공) ;
  • 김명겸 (서울여자대학교 자연과학대학 생명환경공학과)
  • Received : 2018.02.08
  • Accepted : 2018.02.22
  • Published : 2018.03.31

Abstract

Cells of Deinococcus puniceus $DY1^T$ are Gram-positive, coccus-shaped, and crimson color-pigmented. Strain $DY1^T$ was isolated from soil irradiated with 5 kGy gamma radiation and showed resistance to UVC and gamma radiation. In this study, we report the complete genome sequence of a bacterium Deinococcus puniceus $DY1^T$ is consist of circular chromosome comprised of 2,971,983 bp, with the G + C content of 62.5%. The complete genome sequence was obtained using the PacBio RS II platform, it included 2,617 coding sequences (CDs), 2,762 genes, and 88 pseudogene.

이 연구에서는 5 kGy 의 감마선에 조사된 토양으로부터 분리된 Deinococcus puniceus $DY1^T$의 완전한 게놈서열을 분석하였다. 이 균주는 UVC 와 감마선에 대한 저항성을 보였으며, PacBio RS II platform 을 통해 시퀀싱을 진행하였다. 해당유전체의 분석결과 G + C 함량이 62.5%인 2,971,983 bp 크기의 원형 염색체를 확인하였으며, 해당 염색체는 2,617 개의 코딩 서열과 2,762 개의 유전자 그리고 88 개의 위유전자를 포함하고 있다.

Keywords

References

  1. Battista, J. and Cox, M. 2006. Genome reconstitution in the extremely radiation resistant bacterium Deinococcus radiodurans, pp. 341-359. In Cigna, A. and Durante, M. (eds.), Radiation Risk Estimates in Normal and Emergency Situations. Springer, Netherlands.
  2. Blasius, M., Sommer, S., and Hubscher, U. 2008. Deinococcus radiodurans: what belongs to the survival kit? Crit. Rev. Biochem. Mol. Biol. 43, 221-238. https://doi.org/10.1080/10409230802122274
  3. Daly, M.J. 2012. Death by protein damage in irradiated cells. DNA Repair 11, 12-21. https://doi.org/10.1016/j.dnarep.2011.10.024
  4. de Groot, A., Dulermo, R., Ortet, P., Blanchard, L., Guerin, P., Fernandez, B., Vacherie, B., Dossat, C., Jolivet, E., Siguier, P., et al. 2009. Alliance of proteomics and genomics to unravel the specificities of Sahara bacterium Deinococcus deserti. PLoS Genet. 5, e1000434. https://doi.org/10.1371/journal.pgen.1000434
  5. Kim, M.K., Kang, M.S., Srinivasan, S., Lee, D.H., Lee, S.Y., and Jung, H.Y. 2017a. Complete genome sequence of Hymenobacter sedentarius $DG5B^T$, a bacterium resistant to gamma radiation. Mol. Cell. Toxicol. 13, 199-205. https://doi.org/10.1007/s13273-017-0021-x
  6. Kim, M.K., Kim, J.Y., Kim, S.J., Kim, M.J., Lee, J.Y., Kim, C.G., and Srinivasan, S. 2017b. Complete genome sequence of Spirosoma pulveris JSH5-$14^T$, a bacterium isolated from a dust sample. Mol. Cell. Toxicol. 13, 373-378. https://doi.org/10.1007/s13273-017-0041-6
  7. Lee, J.J., Srinivasan, S., Lim, S., Joe, M., Im, S., and Kim, M.K. 2015. Deinococcus puniceus sp. nov., a bacterium isolated from soil-irradiated gamma radiation. Curr. Microbiol. 70, 464-469.
  8. Petit, C. and Sancar, A. 1999. Nucleotide excision repair: from E. coli to man. Biochimie 81, 15-25. https://doi.org/10.1016/S0300-9084(99)80034-0
  9. Srinivasan, S., Lee, S.Y., Kim, M.K., and Jung, H.Y. 2017. Complete genome sequence of Hymenobacter sp. DG25A, a gamma radiation-resistant bacterium isolated from soil. Mol. Cell. Toxicol. 13, 65-72.
  10. White, O., Eisen, J.A., Heidelberg, J.F., Hickey, E.K., Peterson, J.D., Dodson, R.J., Haft, D.H., Gwinn, M.L., Nelson, W.C., Richardson, D.L., et al. 1999. Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science 286, 1571-1577. https://doi.org/10.1126/science.286.5444.1571
  11. Yu, S.L. and Lee, S.K. 2017. Ultraviolet radiation: DNA damage, repair, and human disorders. Mol. Cell. Toxicol. 13, 21-28. https://doi.org/10.1007/s13273-017-0002-0