DOI QR코드

DOI QR Code

Face Morphing Using Generative Adversarial Networks

Generative Adversarial Networks를 이용한 Face Morphing 기법 연구

  • Han, Yoon (Department of Big Data Application and Security, Korea University) ;
  • Kim, Hyoung Joong (Department of Big Data Application and Security, Korea University)
  • 한윤 (고려대학교 빅데이터응용및보안학과) ;
  • 김형중 (고려대학교 빅데이터응용및보안학과)
  • Received : 2017.11.26
  • Accepted : 2018.03.25
  • Published : 2018.03.31

Abstract

Recently, with the explosive development of computing power, various methods such as RNN and CNN have been proposed under the name of Deep Learning, which solve many problems of Computer Vision have. The Generative Adversarial Network, released in 2014, showed that the problem of computer vision can be sufficiently solved in unsupervised learning, and the generation domain can also be studied using learned generators. GAN is being developed in various forms in combination with various models. Machine learning has difficulty in collecting data. If it is too large, it is difficult to refine the effective data set by removing the noise. If it is too small, the small difference becomes too big noise, and learning is not easy. In this paper, we apply a deep CNN model for extracting facial region in image frame to GAN model as a preprocessing filter, and propose a method to produce composite images of various facial expressions by stably learning with limited collection data of two persons.

최근 컴퓨팅 파워의 폭발적인 발전으로 컴퓨팅의 한계 라는 장벽이 사라지면서 딥러닝 이라는 이름 하에 순환 신경망(RNN), 합성곱 신경망(CNN) 등 다양한 모델들이 제안되어 컴퓨터 비젼(Computer Vision)의 수많은 난제들을 풀어나가고 있다. 2014년 발표된 대립쌍 모델(Generative Adversarial Network)은 비지도 학습에서도 컴퓨터 비젼의 문제들을 충분히 풀어나갈 수 있음을 보였고, 학습된 생성기를 활용하여 생성의 영역까지도 연구가 가능하게 하였다. GAN은 여러 가지 모델들과 결합하여 다양한 형태로 발전되고 있다. 기계학습에는 데이터 수집의 어려움이 있다. 너무 방대하면 노이즈를 제거를 통한 효과적인 데이터셋의 정제가 어렵고, 너무 작으면 작은 차이도 큰 노이즈가 되어 학습이 쉽지 않다. 본 논문에서는 GAN 모델에 영상 프레임 내의 얼굴 영역 추출을 위한 deep CNN 모델을 전처리 필터로 적용하여 두 사람의 제한된 수집데이터로 안정적으로 학습하여 다양한 표정의 합성 이미지를 만들어 낼 수 있는 방법을 제시하였다.

Keywords

References

  1. J. Areeyapinan, and P. Kanongchaiyos, "Face morphing using critical point filters," in Proceedings of International Joint Conference on Computer Science and Software Engineering, pp. 283-288, 2012.
  2. I. J. Goodfellow, J. P. Abadie, M. Mirza, B. Xu, D. W. Farley, S. Ozair, A. Courville, and Y. Bengio, "Generative adversarial networks," in Proceedings of the Neural Information Processing Systems, pp. 2672-2680, 2014.
  3. R. Tachibana, T. Matsubara, and K. Uehara, "Semisupervised learning using adversarial networks," in Proceeding of the International Conference on Computer and Information Science, pp. 1-6, 2016.
  4. M. S. Ko, H. K. Roh, and K. H. Lee "GANMOOK: Generative adversarial network to stylize images like ink wash painting," in Proceedings of the Korea Computer Congress, pp. 793-795, 2017.
  5. L. C. Yang, S. Y. Chou, and Y. H. Yang "MidiNet: A convolutional generative adversarial network for symbolicdomain music generation," in Proceedings of the 18th International Society of Music Information Retrieval Conference, pp. 324-331, 2017.
  6. A. Radford, L. Metz, and S. Chintala "Unsupervised representation learning with deep convolutional generative adversarial networks," in Proceedings of the International Conference on Learning Representations, pp. 1-15, 2016.
  7. Y. Le Cun, L. Bottou, Y. Bengio, and P. Haffner "Gradientbased learning applied to document recognition," Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998. https://doi.org/10.1109/5.726791
  8. S. Lawrence, C.L. Giles, A. C. Tsoi, and A. D. Back, "Face recognition: A convolutional neural-network approach," IEEE Transactions on Neural Networks vol. 8, no. 1, pp. 98-113, 1997. https://doi.org/10.1109/72.554195
  9. X. Sun, X Ren, S Ma, and H. Wang, "meProp: Sparsified back propagation for accelerated deep learning with reduced overfitting," in Proceedings of the International Conference on Machine Learning, pp. 3299-3308, 2017.
  10. A. Radford, L. Metz, and S. Chintala. "Unsupervised representation learning with deep convolutional generative adversarial networks,"in Proceedings of the International Conference on Learning Representations, pp. 1-15, 2016. arXiv preprint arXiv:1511.06434
  11. J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, "Striving for simplicity: The all convolutional net," in Proceedings of the International Conference on Learning Representations, pp. 1-14, 2015. arXiv preprint arXiv:1412.6806
  12. X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbee, "InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets," in Proceedings of Advances in Neural Information Processing Systems, pp. 2180-2188, 2016.
  13. D. Triantafyllidou and A. Tefas, "Face detection based on deep convolutional neural networks exploiting incremental facial part learning," in Proceeding of the International Conference on Pattern Recognition, pp. 3560-3565, 2016.
  14. E. L. Miller, G. Huang, A. RoyChowdhury, H. Li, and G. Hua, "Labeled faces in the wild: A survey," in Advances in Face Detection and Facial Image Analysis, pp. 189-248, 2016.
  15. Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521, no. 7553, pp. 436-444, 2015. https://doi.org/10.1038/nature14539
  16. S. H. Choi, and S. H. Jung, "Performance Improvement of Fake Discrimination using Time Information in CNN-based Signature Recognition", Journal of Digital Contents Society, Vol. 19, No. 1, pp. 206-212, 2017