DOI QR코드

DOI QR Code

Ginsenoside Rg5 prevents apoptosis by modulating heme-oxygenase-1/nuclear factor E2-related factor 2 signaling and alters the expression of cognitive impairment-associated genes in thermal stress-exposed HT22 cells

  • Choi, Seo-Yun (Department of Food Science and Biotechnology, College of Life Science, CHA University) ;
  • Kim, Kui-Jin (Department of Food Science and Biotechnology, College of Life Science, CHA University) ;
  • Song, Ji-Hyeon (Department of Food Science and Biotechnology, College of Life Science, CHA University) ;
  • Lee, Boo-Yong (Department of Food Science and Biotechnology, College of Life Science, CHA University)
  • Received : 2017.01.24
  • Accepted : 2017.02.15
  • Published : 2018.04.15

Abstract

Our results suggested that thermal stress can lead to activation of hippocampal cell damage and reduction of memory-associated molecules in HT22 cells. These findings also provide a part of molecular rationale for the role of ginsenoside Rg5 as a potent cognitive impairment preventive compound in blocking the initiation of hippocampal damage.

Keywords

References

  1. Cian C, Barraud P, Melin B, Raphel C. Effects of fluid ingestion on cognitive function after heat stress or exercise-induced dehydration. Int J Psychophysiol 2001;42:243-51. https://doi.org/10.1016/S0167-8760(01)00142-8
  2. Kilbourne EM. Heat waves and hot environments. Am J Public Health 1997:245-69.
  3. Marcuccilli CJ, Mathur SK, Morimoto RI, Miller RJ. Regulatory differences in the stress response of hippocampal neurons and glial cells after heat shock. J Neurosci 1996;16:478-85. https://doi.org/10.1523/JNEUROSCI.16-02-00478.1996
  4. Szabo K, Forster A, Jager T, Kern R, Griebe M, Hennerici MG, Gass A. Hippocampal lesion patterns in acute posterior cerebral artery stroke clinical and MRI findings. Stroke 2009;40:2042-5. https://doi.org/10.1161/STROKEAHA.108.536144
  5. Kennedy D, Haskell C, Wesnes K, Scholey A. Improved cognitive performance in human volunteers following administration of guarana (Paullinia cupana) extract: comparison and interaction with Panax ginseng. Pharmacol Biochem Behav 2004;79:401-11. https://doi.org/10.1016/j.pbb.2004.07.014
  6. Coqueret O. New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment? Trends Cell Biol 2003;13:65-70. https://doi.org/10.1016/S0962-8924(02)00043-0
  7. Rich T, Allen RL, Wyllie AH. Defying death after DNA damage. Nature 2000;407:777-83. https://doi.org/10.1038/35037717
  8. Nunez G, Benedict MA, Hu Y, Inohara N. Caspases: the proteases of the apoptotic pathway. Oncogene 1998;17:3237-45. https://doi.org/10.1038/sj.onc.1202581
  9. Paul C, Teng S, Saunders PT. A single, mild, transient scrotal heat stress causes hypoxia and oxidative stress in mouse testes, which induces germ cell death. Biol Reprod 2009;80:913-9. https://doi.org/10.1095/biolreprod.108.071779
  10. Altan O, Pabuccuoglu A, Altan A, Konyalioglu S, Bayraktar H. Effect of heat stress on oxidative stress, lipid peroxidation, and some stress parameters in broilers. Br Poult Sci 2003;44:545-50. https://doi.org/10.1080/00071660310001618334
  11. Clark JE, Foresti R, Green CJ, Motterlini R. Dynamics of haem oxygenase-1 expression and bilirubin production in cellular protection against oxidative stress. Biochem J 2000;348:615-9. https://doi.org/10.1042/bj3480615
  12. Michiels C, Raes M, Toussaint O, Remacle J. Importance of Se-glutathione peroxidase, catalase, and Cu/Zn-SOD for cell survival against oxidative stress. Free Radic Biol Med 1994;17:235-48. https://doi.org/10.1016/0891-5849(94)90079-5
  13. Johnson JA, Johnson DA, Kraft AD, Calkins MJ, Jakel RJ, Vargas MR, Chen PC. The Nrf2-ARE pathway: an indicator and modulator of oxidative stress in neurodegeneration. Ann N Y Acad Sci 2008;1147:61-9. PMCID: PMC2605641. https://doi.org/10.1196/annals.1427.036
  14. Butterfield DA, Reed T, Newman SF, Sultana R. Roles of amyloid ${\beta}$-peptideassociated oxidative stress and brain protein modifications in the pathogenesis of Alzheimer's disease and mild cognitive impairment. Free Radic Biol Med 2007;43:658-77. https://doi.org/10.1016/j.freeradbiomed.2007.05.037
  15. Barco A, Bailey CH, Kandel ER. Common molecular mechanisms in explicit and implicit memory. J Neurochem 2006;97:1520-33. https://doi.org/10.1111/j.1471-4159.2006.03870.x
  16. Tao X, Finkbeiner S, Arnold DB, Shaywitz AJ, Greenberg ME. $Ca^{2+}$ influx regulates BDNF transcription by a CREB family transcription factor-dependent mechanism. Neuron 1998;20:709-26. https://doi.org/10.1016/S0896-6273(00)81010-7
  17. Bourtchuladze R, Frenguelli B, Blendy J, Cioffi D, Schutz G, Silva AJ. Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 1994;79:59-68.
  18. Gong L, Li S-L, Li H, Zhang L. Ginsenoside Rg1 protects primary cultured rat hippocampal neurons from cell apoptosis induced by ${\beta}$-amyloid protein. Pharm Biol 2011;49:501-7. https://doi.org/10.3109/13880209.2010.521514
  19. Chen XC, Zhu YG, Zhu LA, Huang C, Chen Y, Chen LM, Fang F, Zhou YC, Zhao CH. Ginsenoside Rg1 attenuates dopamine-induced apoptosis in PC12 cells by suppressing oxidative stress. Eur J Pharmacol 2003;473:1-7. https://doi.org/10.1016/S0014-2999(03)01945-9
  20. Lopez MVN, Cuadrado MPG-S, Ruiz-Poveda OMP, Del Fresno AMV, Accame MEC. Neuroprotective effect of individual ginsenosides on astrocytes primary culture. Biochim Biophys Acta, Gen Subj 2007;1770:1308-16. https://doi.org/10.1016/j.bbagen.2007.06.008
  21. Ye R, Li N, Han J, Kong X, Cao R, Rao Z, Zhao G, et al. Neuroprotective effects of ginsenoside Rd against oxygen-glucose deprivation in cultured hippocampal neurons. Neurosci Res 2009;64:306-10. https://doi.org/10.1016/j.neures.2009.03.016
  22. Lee CH, Kim JM, Kim DH, Park SJ, Liu X, Cai M, Hong JG, Park JH, Ryu JH. Effects of Sun ginseng on memory enhancement and hippocampal neurogenesis. Phytother Res 2013;27:1293-9. https://doi.org/10.1002/ptr.4873
  23. Sandor V, Senderowicz A, Mertins S, Sackett D, Sausville E, Blagosklonny MV, Bates SE. P21-dependent g(1)arrest with downregulation of cyclin D1 and upregulation of cyclin E by the histone deacetylase inhibitor FR901228. Br J Cancer 2000;83:817-25. https://doi.org/10.1054/bjoc.2000.1327
  24. Hong SJ, Dawson TM, Dawson VL. Nuclear and mitochondrial conversations in cell death: PARP-1 and AIF signaling. Trends Pharmacol Sci 2004;25:259-64. https://doi.org/10.1016/j.tips.2004.03.005
  25. Carlberg I, Mannervik B. Glutathione reductase. Methods Enzymol 1985;113:484-90.
  26. Harvey CJ, Thimmulappa RK, Singh A, Blake DJ, Ling G, Wakabayashi N, Fujii J, Myers A, Biswal S. Nrf2-regulated glutathione recycling independent of biosynthesis is critical for cell survival during oxidative stress. Free Radic Biol Med 2009;46:443-53. https://doi.org/10.1016/j.freeradbiomed.2008.10.040
  27. Egan MF, Kojima M, Callicott JH, Goldberg TE, Kolachana BS, Bertolino A, Zaitsev E, Gold B, Goldman D, Dean M, et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 2003;112:257-69. https://doi.org/10.1016/S0092-8674(03)00035-7
  28. Ingkaninan K, Temkitthawon P, Chuenchom K, Yuyaem T, Thongnoi W. Screening for acetylcholinesterase inhibitory activity in plants used in Thai traditional rejuvenating and neurotonic remedies. J Ethnopharmacol 2003;89: 261-4. https://doi.org/10.1016/j.jep.2003.08.008
  29. Enz A, Amstutz R, Boddeke H, Gmelin G, Malanowski J. Brain selective inhibition of acetylcholinesterase: a novel approach to therapy for Alzheimer's disease. Prog Brain Res 1993;98:431-8.
  30. Liu J, Li L, Suo WZ. HT22 hippocampal neuronal cell line possesses functional cholinergic properties. Life Sci 2009;84:267-71. https://doi.org/10.1016/j.lfs.2008.12.008

Cited by

  1. Caspase-Mediated Anti-Apoptotic Effect of Ginsenoside Rg5, a Main Rare Ginsenoside, on Acetaminophen-Induced Hepatotoxicity in Mice vol.65, pp.42, 2018, https://doi.org/10.1021/acs.jafc.7b03361
  2. Pharmacological activities of ginsenoside Rg5 (Review) vol.22, pp.2, 2018, https://doi.org/10.3892/etm.2021.10272
  3. Network Pharmacology of Red Ginseng (Part I): Effects of Ginsenoside Rg5 at Physiological and Sub-Physiological Concentrations vol.14, pp.10, 2018, https://doi.org/10.3390/ph14100999
  4. Network Pharmacology of Ginseng (Part II): The Differential Effects of Red Ginseng and Ginsenoside Rg5 in Cancer and Heart Diseases as Determined by Transcriptomics vol.14, pp.10, 2018, https://doi.org/10.3390/ph14101010