
J. lnf. Commun. Converg. Eng. 16(4): 228-234, Dec. 2018 Regular paper

228

Received 29 June 2018, Revised 16 October 2018, Accepted 16 October 2018 
*Corresponding Author Eunjoo Lee (E-mail: ejlee@knu.ac.kr, +82-53-950-7548) 
School of Computer Science and Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Korea.

https://doi.org/10.6109/jicce.2018.16.4.228 print ISSN: 2234-8255 online ISSN: 2234-8883

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-
nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Copyright ⓒ The Korea Institute of Information and Communication Engineering 

 

 

Semantic Similarity-Based Contributable Task Identification 
for New Participating Developers

Jungil Kim1, Geunho Choi2, and Eunjoo Lee2* , Member, KIICE

1Department of Software Technology Laboratory, Kyungpook National University, Daegu 41566, Korea
2School of Computer Science and Engineering, Kyungpook National University, Daegu 41566, Korea

Abstract

In software development, the quality of a product often depends on whether its developers can rapidly find and contribute to the

proper tasks. Currently, the word data of projects to which newcomers have previously contributed are mainly utilized to find

appropriate source files in an ongoing project. However, because of the vocabulary gap between software projects, the accuracy

of source file identification based on information retrieval is not guaranteed. In this paper, we propose a novel source file

identification method to reduce the vocabulary gap between software projects. The proposed method employs DBPedia Spotlight

to identify proper source files based on semantic similarity between source files of software projects. In an experiment based on

the Spring Framework project, we evaluate the accuracy of the proposed method in the identification of contributable source

files. The experimental results show that the proposed approach can achieve better accuracy than the existing method based on

comparison of word vocabularies.

Index Terms: Information retrieval, Source file identification, Task recommendation

I. INTRODUCTION

In software development, the quality of a product often

depends on whether its developers can rapidly find and con-

tribute to the proper tasks. In particular, rapid influx and

contributions of newly participating contributors activates

project development and provides new ideas in open-source

projects [1]. Developers generally need significant time to

become familiar with a software project. For example, a

newly participating developer on a software project searches

for contributable source files after reading the reference doc-

uments and understanding the structures of the software

project. However, it is a time-consuming task to manually

navigate all source files contained in a large-scale software

project [2-8]. To reduce the burden of this task, newly partic-

ipating developers can rely on experience obtained on previ-

ous software projects to which they contributed.

A source file consists of elements such as comments,

methods, variables, classes, and identifiers, each of which is

represented by words [9]. The vocabulary of words in a

source file is usually determined according to the functional-

ity of the source file. Therefore, developers can identify the

contributable source files by searching for the words con-

tained in them. However, even the source files that imple-

ment the same functionality may be different in vocabulary,

because of authors’ different coding habits or the different

coding conventions of the software projects. The vocabulary

difference tends to be influenced by the software projects.

When words belong to separate projects, the difference

between them is large [10, 11]. This makes it difficult to

associate words contained in different software projects. On

this basis, the word set in previous projects is unsuitable for
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use in finding the proper source files in the ongoing project.

In this paper, we present an approach to reduce the vocab-

ulary difference by identifying the proper source files based

on words in external software projects. Spotlight is a tool

that links text to real-world concepts based on the DBPedia

knowledge base, which can be used to combine different

vocabulary words that refer to the same concept meaning

[12]. Spotlight discovers linkable words and links the dis-

covered words to the concept entities of DBPedia. We

employ Spotlight to convert the words of a source file into

semantic words. A semantic word is defined as a word refer-

ring to a concept entity in DBPedia. The words referring to

the same concept entity are converted into one semantic

word in a source file. Thus, a source file is represented as a

semantic word collection. We propose a novel identification

approach for source files to reduce the vocabulary gap

between software projects. The proposed approach forms the

semantic word collections of a participating project and

external projects into semantic word vectors and a developer

contribution vector, respectively, using DBPedia Spotlight.

Contributable source files are then determined by computing

the similarity between the developer contribution vector and

the semantic word vectors using cosine similarity. To investi-

gate the applicability of the proposed approach to identifying

contributable source files, we perform an experiment on an

open-source project. In the experiment, we compare the pro-

posed approach with the existing method for identifying con-

tributable source files in a project of interest. The experimental

result shows that the proposed approach can more effectively

identify the actually contributed source files than the existing

method. With Top-25 and Top-250 identification, the pro-

posed approach can obtain results improved by 23% and

32%, respectively, compared with the existing method.

Therefore, we believe that the proposed approach can sup-

port newly participating developers in identifying contribut-

able source files based on their experience in external

software project development.

The remainder of this paper is structured as follows. The

works related to this study are introduced in Section II. The

detailed proposed approach is described in Section III.

Experiment results performed on an open-source project are

reported in Section IV. Section V concludes this study.

II. RELATED WORKS

In software project development, attraction and settlement

of developers increase the flexibility of project development

[1]. In particular, because entry and exit of developers often

occur in open-source project development, quick settlement

of developers is crucial. Mentor recommendation can be a

solution for the problem of developer settlement. The major

role of a mentor is to help newcomers resolve their works

and familiarize the software development process. Newcom-

ers can readily complete their work with the support of men-

tors [13, 14]. However, because there is usually high influx

of newcomers in an open-source project, mentor recommen-

dation is rarely available in specific cases. On the other

hand, task recommendation provides another solution to the

problem of developer settlement. Newcomers can employ

task recommendation to find suitable tasks and increase their

contribution rate.

Cubranic and Murphy [15] and Malheiros et al. [16] pro-

posed task recommendation methods for the support of new

participating developers on a software project. The methods

are based on text similarity between presented query key-

words and the description text of resolved previous tasks.

However, these methods require words to be closely related

to the participating project to ensure reliability of recommen-

dation, and they cannot overcome the vocabulary gap when

newcomers want to find similar tasks to the works they con-

tributed to other software projects.

In information retrieval, semantic comparison between

documents is presented to alleviate the limitation of lexical

comparison. This makes document retrieval with the lexical

comparison of words ambiguous. Spotlight [17] is a tool to

link given words to DBPedia concepts. A DBPedia concept

is an online document page describing real-world entities.

Spotlight connects words indicating the same entity to an

entity concept. Table 1 shows an example of linking words

to DBPedia concept entities. The words synchronizing, sync,

synchronize, and synchrony are all connected to an entity

concept of synchronization. In this paper, we use Spotlight to

alleviate the vocabulary problem in identifying particular

source files on a software project, which previous studies

have not examined.

III. APPROACH

The overall work flow of our proposed approach is shown

in Fig. 1. First, the contributed source files in external proj-

ects and the source files of a participating project are passed

to Spotlight as inputs. All words contained in the given

source files are annotated with semantic words through Spot-

light. Semantic word vectors are then generated from the

sematic word collections of the source files in the participat-

ing project, and a developer contribution vector is generated

from the semantic word collections of the contributed source

Table 1. Preprocessing results

Preprocessing method Word Preprocessed words

CamelCase split getHttpHeader get, Http, Header

Lowercase transform get, Http, Header get, http, header

Stopword removal http, header http, header
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files. Finally, Top-N similar source files are determined by

comparing the developer contribution vector with the seman-

tic word vectors. In the following subsections, the works are

detailed.

A. Preprocessing

Before annotating words of source files with Spotlight,

meaningless words must be filtered. For example, English

stop words frequently appear in source code but represent no

real-world entities. In addition, words comprising two or

more constituent words must be split. In this paper, we pre-

process the words of a source file with several natural lan-

guage process techniques. First, a word comprising two or

more words is split by using CamelCase splitting. For exam-

ple, the compound word wordForm is split into separate

words word and Form by CamelCase splitting. Uppercases

are then transformed into lowercases with lowercase trans-

form. The word Form is transformed into form. Stopwords

are then removed using stopword removal. Stopword

removal is used to remove programming language keywords

and English stopwords. Words of less than two characters

are also excluded because they are often interpreted as

meaningless or incorrect abbreviations. Table 1 shows each

preprocessing result of the word ‘getHttpHeader’.

B. Annotation

Spotlight is based on the DBPedia ontology comprising more

than 5 million concept entities [17]. Given a set of words,

Spotlight annotates them through the tasks of named entity rec-

ognition and information extraction. An annotation associates a

word with a DBPedia concept. Although some words are dif-

ferent in vocabulary, they are given the same annotation if they

are associated with the same DBPedia concept.

After preprocessing, we employ Spotlight to reduce the

vocabulary gap of words between source files. Spotlight

attaches annotations to the words of source files that have

been preprocessed. Table 2 shows an example of annotation

results with various similar words in the vocabulary. We term

annotations obtained from the annotation task as semantic

words and formally express the annotations of the words in a

source file as a semantic word collection (sf) as follows.

(1)

where f is a source file, ti is a semantic word, and n is the

total number of semantic words in f. We produce two sets of

semantic word collections, Sc and Sp, from the contributed

source files and the source files in the participating project,

respectively.

C. Generating Semantic Word Vectors

In the field of information retrieval, term frequency-

inverse document frequency (TF-IDF) is used to determine

the importance of words [18]. TF-IDF determines the impor-

tance of words according to the frequencies of occurrence in

a text document and a collection of text documents. High

weight is assigned to terms that frequently appear in a text

document and infrequently appear in the collection of text

documents. On the other hand, low weight is assigned to

terms that generally appear in various text documents.

In this paper, we use TF-IDF to determine the importance

of the semantic words in Sp. The frequency of a semantic

word is determined by counting the occurrences in a seman-

tic word collection. The inverse document frequency of a

semantic word is determined by the inverse fraction of the

semantic word collections that contain the semantic word.

The term frequency and inverse document frequency of a

semantic word in a semantic word collection (TF(sf, ti) and

IDF(ti)) are computed as follows, respectively.

(2)

(3)

where N is the total number of semantic word collections,

fti,sf is the frequency of a semantic word ti in a semantic word

collection sf, and fti,N is the frequency of a semantic word ti
in all semantic word collections. IDF(ti) is at least 1. Based

on the above equation, the weight of a semantic word ti
(wsf,ti

) is calculated by multiplying the term frequency and

inverse document frequency of ti and is expressed as follows.

 

 

 

Table 2. Example of annotation

Words Annotation result

synchronizing, sync, synced, synchronize, 

synchrony, syncs, syncing
Synchronization

parsing, decoding, parsers, parse, decode, 

parses, parser, parsable
Parsing

Fig. 1. The work flow of the proposed approach.
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(4)

Based on the above equation, we compute the weight of

all semantic words in all semantic word collections of a par-

ticipating project Sp and then form each semantic word col-

lection into a semantic word vector. We formally represent a

semantic word vector of a semantic word collection sf
(SWVsf

) as follows.

(5)

where m is the number of the semantic words in a semantic

word collection. wti
 is the abbreviation for wsf,ti

 indicating the

weight of a semantic word ti in sf and is at least 0.

D. Developer Contribution Vector

The motivation of the approach proposed in this paper is

that developers prefer to work with familiar source files

when participating in software project development. In gen-

eral, the source files contributed by a developer reflect his or

her preference for contribution to software project develop-

ment. Therefore, we consider the contributed source files in

external software projects as a query to identify contribut-

able source files in a participating project. We compute the

contribution rate of each semantic word in the semantic

word collections Sc and represent the contribution rate of all

semantic words as a vector.

Before computing the contribution rate, we remove the

semantic words that are not contained in Sp. We then deter-

mine the contribution rate for each semantic word. The con-

tribution rate of a semantic word (cti) is computed as

follows.

(6)

where I(ti) is 1 if semantic word ti is contained in sj; other-

wise, it is 0. cti indicates the contribution rate at which the

developer contributed the source files associated with

semantic word ti and ranges from 0 to 1. Based on the above

equation, we compute the contribution rate of all semantic

words contained in Sc. All computed contribution rates of the

semantic words are represented as a developer contribution

vector (DCVd).

(7)

where d is a developer, and n is the number of semantic

words shared between Sp and Sc. A developer contribution

vector contains the primary contributed semantic words of a

developer. We use the developer contribution vector as a

query vector to identify contributable source files in a partic-

ipating software project.

E. Computation of Semantic Similarity

In this paper, we use cosine similarity to calculate the sim-

ilarity between a developer contribution vector and a seman-

tic word vector. Cosine similarity is a measurement for

computing the cosign angle between two vectors and has

been widely used in various areas such as datamining and

document clustering [9]. We compute the similarity between

a developer contribution vector and a semantic word vector

(SIM(DCVd, SWVsf
)) as follows.

(8)

where SIM(DCVd, SWVsf
) ranges from 0 to 1; the greater the

number of shared semantic words between DCVd and SWVsf
,

the closer to 1. On the other hand, the fewer the shared

semantic words, the closer to 0.

IV. EXPERIMENTS

A. Experimental Dataset

GHTorrent [19] provides a large dataset of various soft-

ware projects developed on GitHub. The GHTorrent data

have been widely used in several studies for experimental

purposes [19-21]. GHTorrent processes obtained data through

the public event stream of GitHub and provides the pro-

cessed data as MySQL and MongoDB dump databases.

Metadata of the developmental history of software projects

are stored in the Mysql database. Actual repository data of

software projects are stored in the MongoDB database. In

this study, we downloaded the MySQL database from

GHTorrent that contained GitHub data from January to

December 2016. We then examined the metadata of the

MySQL database and selected Spring Framework because it

is popular, it is large, and most of its contributors have con-

tributed to other software projects as well. Spring Frame-

work includes 2,511 source files and 285,200 developers.

B. Experimental Method

The objective of the experiment is to investigate the use-

fulness of the proposed approach. To achieve the objective,

we compare the proposed approach with the existing

approach [22] in identifying source files in the experimental

project. To identify source files, the existing method makes

basic word vectors, whereas the proposed method makes

semantic vectors for source files and queries.

To conduct the experiment, we first select developers in

the experimental project as subjects who contributed more

than five source files to the experimental project and contrib-
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uted more than 50 source files to external projects. For each

subject, we then use 50 recently contributed source files in

external projects to generate a query vector. Given a query

vector, the existing and proposed methods identify N source

files. We set the value of N to 25 and 250.

C. Evaluation Metric

To quantitatively evaluate the proposed approach, we use

Top-N accuracy. Top-N accuracy has been widely used to

evaluate the performance of document retrieval methods and

recommendation systems [15, 16, 20, 23]. Top-N accuracy

indicates the accuracy of the identification result by a given

query. It is computed by dividing relevant elements included

in an identification result by the number of identified ele-

ments (N). In this experiment, the relevant element is the

source file contributed by the subjects in the experimental

project. We compute the Top-N accuracy of an identification

result (Top-Nd) as follows.

(9)

where d is a developer, I is a set of identified source files,

and Cd is a set of source files actually contributed by devel-

oper d. Top-Nd ranges from 0 to 1. Top-Nd is 0 if none of the

contributed source files  are included in the identified

source files or 1 if all contributed source files are included in

the identified source files. The greater Top-Nd, the more

accurate the identification result.

D. Experimental Result

Table 3 shows the Top-N accuracy of the existing method

and the proposed approach. The “User ID” column corre-

sponds to the number of unique identifications assigned to the

subjects by GHTorrent. With Top-25 and Top-250 identifica-

tion, the proposed approach obtained better accuracy than the

existing method. With Top-25 identification, the proposed

approach obtained better accuracy for all but two subjects

(5010240 and 599214). On average, the Top-25 accuracy of

the proposed approach was 0.29, and the Top-25 accuracy of

the existing method was 0.06. With Top-250 identification, the

proposed approach obtained better accuracy than the existing

method for all subjects. On average, the Top-250 accuracy of

the proposed approach was 0.39, and the Top-250 accuracy of

the existing method was 0.07.

E. Discussion

The experimental result shows that the proposed approach

obtains better identification results than the existing method.

In particular, we believe that the proposed approach can alle-

viate the decreasing identification accuracy due to the vocab-

ulary gap. To identify source files, the existing method is

based on vocabulary similarity. Given a set of words as a

query, the existing method tries to find the source files that

involve words similar to the given query words. It is limited

to identifying source files involving words with the same

meaning as the query words but different vocabularies.

This limitation makes the identification of source files dif-

ficult when newly participating developers try to find suit-

able source files. In general, newcomers to a software

project often rely on information retrieval to identify their

contributable source files [15, 16, 22]. To find contributable

source files, newcomers use as queries the words of source

files they contributed to external projects. However, if there

is a large vocabulary gap between the source files contrib-

uted to external projects and the contributable source files in

a participating project, the identification may be unsatisfac-

tory. In the result shown in Section IV-D, we clearly

revealed that the existing method is limited and confirmed

that the proposed approach can reduce the limitation. There-

fore, although the relevance of identified source files is

determined by subjective judgment, we believe that the pro-

posed approach can be complementary in the vocabulary gap

problem in retrieving source files.

F. Limitations

The threat to validity of this study is related to internal

validity and external validity. The threat to internal validity

concerns the use of the similarity measurement between the

developer contribution vector and the semantic word vector

and the concept knowledge tool for converting the words of

 

f C
d

∈

Table 3. Results of Top-25 and Top-250 identification

User ID
Top-25 Top-250

Existing Proposed Existing Proposed

114374 0.12 0.16 0.14 0.16

14645 0.00 0.28 0.00 0.35

206265 0.52 0.76 0.47 0.68

21536 0.00 0.32 0.00 0.31

30576 0.00 0.60 0.00 0.98

5010240 0.00 0.04 0.00 0.10

599214 0.00 0.04 0.11 0.22

64600 0.00 0.36 0.06 0.22

65552 0.00 0.25 0.00 0.75

70068 0.00 0.10 0.00 0.10

73485 0.32 0.32 0.29 0.24

8327481 0.00 0.00 0.00 0.43

85534 0.00 0.20 0.00 0.41

85543 0.00 0.17 0.00 0.50

9686 0.00 0.68 0.00 0.42

Avg. 0.06 0.29 0.07 0.39
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source files to semantic words. We used cosine similarity

measurement and the concept knowledge tool Spotlight.

However, there are various similarity measurements for

source files and several concept knowledge tools. Therefore,

when using other similarity measurements and concept

knowledge tools, the experimental results may be observed

to be different. To reduce this limitation, we will examine

several similarity measurements and concept knowledge

tools in future works.

The threat to external validity concerns the generalization

of the proposed approach. We used only Spring Framework

as the experimental project. We also selected only 15 devel-

opers as the subjects. This may not ensure the generalization

of the proposed approach to other software projects. We will

perform additional experiments with various open-source

projects to reduce this limitation. 

V. CONCLUSION

Words in source files are commonly used as query terms

for a developer to find contributable source files in ongoing

projects. The words come mostly from external projects to

which the developer has contributed. Owing to the vocabu-

lary gap between the participating project and the external

projects, accuracy of contributable source files identification

is not guaranteed. In this paper, we proposed a novel

approach to identify source files based on semantic similar-

ity to reduce the vocabulary gap between software projects.

In this approach, the words in the projects are transformed

into semantic words generated using DBPedia Spotlight. The

semantic word collections of the external projects and the

ongoing projects are used to generate the developer contribu-

tion vector and the semantic word vectors, respectively. Con-

tributable source files are then determined by computing the

similarity between the developer contribution vector and the

semantic word vectors using cosine similarity. The experi-

mental results show that the proposed approach can achieve

better accuracy than the existing method based on a compar-

ison of word vocabulary. In future works, we will further

validate the proposed approach on several open-source proj-

ects. We will also apply several similarity measurements and

concept knowledge tools to the proposed approach to improve

this study.
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