광전기화학적 물 분해를 위한 BiVO4 기반 광음극 연구 동향

  • 발행 : 2018.12.31

초록

키워드

참고문헌

  1. Parmar et al, ChemSusChem, 2012, 5, 1926. https://doi.org/10.1002/cssc.201200254
  2. Zhao et al, Phys. Chem. Chem. Phys., 2018, 20, 13637. https://doi.org/10.1039/C8CP01316K
  3. Okuno et al, RSC Adv., 2018, 8, 38140. https://doi.org/10.1039/C8RA07830K
  4. Sarker et al, ChemPhysChem,, 2018, doi: 10.1002/cphc.201800792.
  5. Jo et al, PNAS, 2015, 112, 13774. https://doi.org/10.1073/pnas.1509674112
  6. Pasumarthi et al, J. Mater. Chem. A, 2018, doi: 10.1039/c8ta09899a.
  7. He et al, J. Mater. Chem. A., 2014, 2, 9371. https://doi.org/10.1039/C4TA00895B
  8. Wang et al, Environ. Sci. Technol., 2012, 46, 4599. https://doi.org/10.1021/es2042977
  9. Sun et al, Nano. Res., 2010, 3, 620. https://doi.org/10.1007/s12274-010-0022-8
  10. Chen et al, J. Mater. Chem. A., 2013, 1, 877. https://doi.org/10.1039/C2TA00312K
  11. Li et al, Chem. Mater., 2008, 20, 3983. https://doi.org/10.1021/cm800236z
  12. Lee et al, Nature Energy, 2018, 3, 53. https://doi.org/10.1038/s41560-017-0057-0
  13. Zhong et al, J. Mater. Chem. A, 2016, 4, 9858. https://doi.org/10.1039/C6TA03072F
  14. Han et al, Energy Environ. Sci., 2018, 11, 1299. https://doi.org/10.1039/C8EE00125A
  15. Song et al, ACS Catal., 2018, 8, 5952. https://doi.org/10.1021/acscatal.8b00877
  16. Xia et al, Nano-Micron Lett., 2018, 10:11. https://doi.org/10.1007/s40820-017-0163-3
  17. Thalluri et al, Ind. Eng. Chem. Res., 2014, 53, 2640. https://doi.org/10.1021/ie403999g
  18. Li et al, Adv. Fuct. Mater., 2015, 25, 3074. https://doi.org/10.1002/adfm.201500521
  19. Bai et al, Adv. Sci., 2017, 4, 1600216. https://doi.org/10.1002/advs.201600216
  20. Chen et al, Materials Letters, 2016, 162, 150. https://doi.org/10.1016/j.matlet.2015.09.138
  21. Byun et al, J. Mater. Chem. A, 2017, 5, 6905. https://doi.org/10.1039/C7TA00806F
  22. Kimura et al, J. Mater. Chem. A., 2014, 2, 3948. https://doi.org/10.1039/c3ta15268e
  23. Huo et al, J. Mater. Chem. A., 2014, 2, 3948. https://doi.org/10.1039/c3ta15268e
  24. Li et al, Small, 2013, 9, 3951. https://doi.org/10.1002/smll.201301276
  25. Su et al, Nano Lett., 2011, 11, 1928. https://doi.org/10.1021/nl2000743
  26. Rao et al, Nano Lett., 2014, 14, 1099. https://doi.org/10.1021/nl500022z
  27. Fu et al, ACS Appl. Inter. Mater. Interfaces, 2014, 6, 18550. https://doi.org/10.1021/am505651d
  28. Zhou et al, Nano Lett., 2016, 16, 3463. https://doi.org/10.1021/acs.nanolett.5b05200
  29. Pihosh et al, Scientific Reports, 2015, 5, 11141. https://doi.org/10.1038/srep11141
  30. Xiao et al, RSC adv., 2017, 7, 7547. https://doi.org/10.1039/C6RA28262H
  31. Zhou et al, Nano Lett., 2016, 16, 3463. https://doi.org/10.1021/acs.nanolett.5b05200
  32. Zhang et al, Small, 2017, 13, 1603840. https://doi.org/10.1002/smll.201603840
  33. Zhang et al, ACS Energy Lett., 2017, 2, 813. https://doi.org/10.1021/acsenergylett.7b00060
  34. Qiu et al, Sci. Adv., 2016, 2, 1501764. https://doi.org/10.1126/sciadv.1501764
  35. Xiao et al, J. Mater. Chem. A., 2017, 5, 19091. https://doi.org/10.1039/C7TA06309A
  36. Zachaus et al, Chem. Sci., 2017, 8, 37152.
  37. Kim et al, Science, 2014, 343, 990. https://doi.org/10.1126/science.1246913
  38. Zhang et al, ChemSusChem, 2018, doi: 10.1002/csssc.201801780.
  39. Liang et al, Phys. Chem. Chem. Phys., 2014, 16, 12014. https://doi.org/10.1039/c4cp00674g
  40. Ding et al, Phys. Chem. Chem. Phys., 2013, 15, 4589. https://doi.org/10.1039/c3cp50295c
  41. Tang et al, ACS. Appl. Mater. Interfaces., 2018, 10, 6228. https://doi.org/10.1021/acsami.7b15674
  42. Baek et al, ACS Appl. Mater. Interfaces., 2017, 9, 1479. https://doi.org/10.1021/acsami.6b12782
  43. Kim et al, Nature Communication, 2016, 7, 13380. https://doi.org/10.1038/ncomms13380
  44. Zhang et al, J. Mater. Chem. A, 2015, 3, 21630. https://doi.org/10.1039/C5TA05838D
  45. Chen et al, J. Am. Chem. Soc., 2015, 137, 974. https://doi.org/10.1021/ja511739y
  46. Wang et al, Adv. Mater., 2018, 30, 1880486.
  47. Jiang et al, Sol. RRL, 2018, 2, 1700205. https://doi.org/10.1002/solr.201700205
  48. Andrei et al, Adv. Energy Mater., 2018, 8, 1801403. https://doi.org/10.1002/aenm.201801403
  49. Kobayashi et al, Energy Environ. Sci., 2018, 11, 3003. https://doi.org/10.1039/C8EE01783B
  50. Sinclair et al, Mater. Horiz., 2015, 2, 330. https://doi.org/10.1039/C4MH00156G
  51. Jiang et al, ACS Comb. Sci., 2013, 15, 639. https://doi.org/10.1021/co300119q
  52. Pilli et al, Energy Environ. Sci., 2011, 4, 5028. https://doi.org/10.1039/c1ee02444b
  53. Liang et al, J. Phys. Chem. C, 2011, 115, 17594. https://doi.org/10.1021/jp203004v
  54. Byun et al, Nano Energy, 2018, 43, 244. https://doi.org/10.1016/j.nanoen.2017.11.034
  55. Byun et al, Adv. Funct. Mater., Accepted.