Fig. 1. Bacterial growth (open symbol) and RDX degradation (closed symbol) of wild-type (circle) and the xenA knockout mutant (square) of Pseudomonas sp. HK-6.
Fig. 2. Survival rates of wild-type (A) and xenA mutant (B) Pseudomonas sp. HK-6 following exposure to RDX.
Fig. 3. Scanning electron micrographs of the wild-type (A) and its xenA mutant (B) of Pseudomonas sp. HK-6 treated with 50 μM RDX for 8 h.
Fig. 4. Induction of stress shock proteins (SSPs) in wild-type and xenA mutant Pseudomonas sp. HK-6 treated with 50 μM RDX for different exposure times (A, B, and C), and for different RDX concentrations (D, E, and F).
Fig. 5. Analysis of dnaK (A) and groEL (B) gene expression under RDX stress conditions.
Fig. 6. 2-DE patterns of total proteins in wild-type (A) and xenA mutant (B) of Pseudomonas sp. HK-6.
Table 1. PCR primers used in this study
Table 2. Comparative analysis of RDX-induced proteins in Pseudomonas sp. HK-6 and its xenA mutant strain by MALDI-TOF fingerprinting
References
- Arhin A and Boucher C. 2010. The outer membrane protein OprQ and adherence of Pseudomonas aeruginosa to human fibronectin. Microbiology 156, 1415-1423. https://doi.org/10.1099/mic.0.033472-0
- Binks PR, Nicklin S, and Bruce NC. 1995. Degradation of hexanydro-1,3,5-trinitro-1,3,4-triazine (RDX) by Stenotrophomonas maltophilia PB1. Appl. Environ. Microbiol. 61, 1318-1322.
- Bollag DM, Rozycki MD, and Edelstein SJ. 1996. Protein methods. 2th ed. Wiley-Liss, New York, USA.
- Chang HW, Kahng HY, Kim SI, Chun JW, and Oh KH. 2004. Characterization of Pseudomonas sp. HK-6 cells responding to explosive RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine). Appl. Microbiol. Biotechnol. 65, 323-329.
- Edrington TC, Kintz E, Goldberg JB, and Tamm LK. 2011. Structural basis for the interaction of lipopolysaccharide with outer membrane protein H (OprH) from Pseudomonas aeruginosa. J. Biol. Chem. 286, 39211-39223. https://doi.org/10.1074/jbc.M111.280933
- Fuller ME, McClay K, Hawari J, Paquet L, Malone TE, Fox BG, and Steffan RJ. 2009. Transformation of RDX and other energetic compounds by xenobiotic reductases XenA and XenB. Appl. Microbiol. Biotechnol. 84, 535-544. https://doi.org/10.1007/s00253-009-2024-6
- Fuller ME, Perreault N, and Hawari J. 2010. Microaerophilic degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by three Rhodococcus strains. Lett. Appl. Microbiol. 51, 313-318. https://doi.org/10.1111/j.1472-765X.2010.02897.x
- Hancock RE and Brinkman FSL. 2002. Function of Pseudomonas porins in uptake and efflux. Annu. Rev. Microbiol. 56, 17-38. https://doi.org/10.1146/annurev.micro.56.012302.160310
- Heukeshoven J and Dernick R. 1985. Simplified method for silver staining of proteins in polyacrylamide gels and the mechanism of silver staining. Electrophoresis 6, 103-112. https://doi.org/10.1002/elps.1150060302
- Ho EM, Chang HW, Kim SI, Kahng HY, and Oh KH. 2004. Analysis of TNT (2,4,6-trinitrotoluene)-inducible cellular responses and stress shock proteome in Stenotrophomonas sp. OK-5. Curr. Microbiol. 49, 346-352. https://doi.org/10.1007/s00284-004-4322-7
- Jackson RG, Rylott EL, Fournier D, Hawari J, and Bruce NC. 2007. Exploring the biochemical properties and remediation applications of the unusual explosive-degrading P450 system XplA/B. Proc. Nat. Acad. Sci. USA 104, 16822-16827. https://doi.org/10.1073/pnas.0705110104
- Juhasz AL and Naidu R. 2007. Explosives: fate, dynamics, and ecological impact in terrestrial and marine environments. Rev. Environ. Contam. Toxicol. 191, 163-215.
- Kim SI, Kim SJ, Nam MH, Kim S, Ha KS, Oh KH, Yoo JS, and Park YM. 2002. Proteome analysis of aniline-induced proteins in Acinetobacter lwoffii K24. Curr. Microbiol. 44, 61-66. https://doi.org/10.1007/s00284-001-0075-8
- Kitts CL, Cunningham DP, and Unkefer PJ. 1994. Isolation of three hexahydro-1,3,5-trinitro-1,3,5-triazine-degrading species of the family Enterobacteriaceae from nitramine explosive-contaminated soil. Appl. Environ. Microbiol. 60, 4608-4711.
- Lee BU, Choi MS, and Oh KH. 2013. Comparative analysis of explosive RDX-induced proteomes in the Pseudomonas sp. HK-6 wild-type strain and its rpoH mutant strain. Biotechnol. Bioprocess Eng. 18, 1224-1229. https://doi.org/10.1007/s12257-013-0249-9
- Lee BU, Choi MS, and Oh KH. 2015. Characterization and proteomic analysis of the Pseudomonas sp. HK-6 xenB knockout mutant under RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) stress. Curr. Microbiol. 70, 119-127. https://doi.org/10.1007/s00284-014-0688-3
- Lee BU, Park SC, Cho YS, Kahng HY, and Oh KH. 2008a. Expression and characterization of the TNT nitroreductase of Pseudomonas sp. HK-6 in Escherichia coli. Curr. Microbiol. 56, 386-390. https://doi.org/10.1007/s00284-007-9093-5
- Lee BU, Park SC, Cho YS, and Oh KH. 2008b. Exopolymer biosynthesis and proteomic changes of Pseudomonas sp. HK-6 under stress of TNT (2,4,6-trinitrotoluene). Curr. Microbiol. 57, 477-483. https://doi.org/10.1007/s00284-008-9272-z
- Lee DC, Stenland CJ, Hartwell RC, Ford EK, Cai K, Miller LC, Gilligan KJ, Rubenstein R, Fournel M, and Petteway Jr SR. 2000. Monitoring plasma processing steps with a sensitive western blot assay for the detection of the porin protein. J. Virol. Methods 84, 77-89. https://doi.org/10.1016/S0166-0934(99)00135-4
- Lorenz A, Rylott EL, Strand SE, and Bruce NC. 2012. Towards engineering degradation of the explosive pollutant hexahydro-1,3,5-trinitro-1,3,5-triazine in the rhizosphere. FEMS Microbiol. Lett. 340, 49-54.
- McCormick NG, Cornell JH, and Kaplan AM. 1981. Biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine. Appl. Environ. Microbiol. 42, 817-823.
- McLellan W, Hartley WR, and Brower M. 1992. Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), pp. 132-180. In Roberts WC and Hartley WR. (eds.), Drinking water health advisory: Munition, Lewis Publishers, Boca Raton, USA.
- Miller JH. 1972. Experiments in molecular genetics, Cold Spring Harbor Laboratory, New York, NY, USA.
- Ng LK, Sherburne R, Taylor DE, and Stiles ME. 1985. Morphological forms and viability of Campylobacter species studied by electron microscopy. J. Bacteriol. 164, 338-343.
- Nizam S, Gazara RK, Verma S, Singh K, and Verma PK. 2014. Comparative structural modeling of sox Old Yellow Enzymes (OYEs) from the necrotrophic fungus Ascochytarabiei: insight into novel OYE classes with differences in cofactor binding, organization of active site residues and stereopreferences. PLoS One 9, e95989. https://doi.org/10.1371/journal.pone.0095989
- Orville AM, Manning L, Blehert DS, Fox BG, and Chambliss GH. 2004. Crystallization and preliminary analysis of xenobiotics reductase B from Pseudomonas fluorescence I-C. Acta Crystallogr. D Biol. Crystallogr. 60, 1289-1291. https://doi.org/10.1107/S0907444904010157
- Osman JL and Klausmeier RE. 1973. Microbial degradation of explosives. Dev. Ind. Microbiol. 14, 247-252.
- Pak JW, Knoke KL, Noguera DR, Fox BG, and Chambliss GH. 2000. Transformation of 2,4,6-trinitrotoluene by purified xenobiotic reductase B from Pseudomonas fluorescens I-C. Appl. Environ. Microbiol. 66, 4742-4750. https://doi.org/10.1128/AEM.66.11.4742-4750.2000
- Perkins DN, Pappin DJ, Creasy DM, and Cottrell JS. 1999. Probabilitybased protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551-3567. https://doi.org/10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2
- Ramos JL, Duque E, Huertas MK, and Haidour A. 1995. Isolation and expression of catabolic potential of a Pseudomonas putida strain able to grow in presence of high concentrations of aromatic hydrocarbons. J. Bacteriol. 177, 3911-3916. https://doi.org/10.1128/jb.177.14.3911-3916.1995
- Ronen Z, Yanovich Y, Goldin R, and Adar E. 2008. Metabolism of the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in a contaminated valdose zone. Chemosphere 73, 1492-1498. https://doi.org/10.1016/j.chemosphere.2008.07.041
- Sikkema J, de Bont JAM, and Poolman B. 1995. Mechanisms of membrane toxicity of hydrocarbons. Microbiol. Rev. 59, 201-222.
- Spiegelhauer O, Werther T, Mende S, Knauer SH, and Dobbek H. 2010. Determinants of substrate binding and protonation in the flavoenzyme xenobiotic reductase A. J. Mol. Biol. 403, 286-298. https://doi.org/10.1016/j.jmb.2010.08.047
- Williams RE and Bruce NC. 2002. 'New uses for an old enzyme'-the old yellow enzyme of flavoenzymes. Microbiology 148, 1607-1614. https://doi.org/10.1099/00221287-148-6-1607