DOI QR코드

DOI QR Code

Effect of Spinning Speed on 29Si and 27Al Solid-state MAS NMR Spectra for Iron-bearing Silicate Glasses

시료의 회전 속도가 함철 비정질 규산염의 고상 NMR 신호에 미치는 영향

  • Kim, Hyo-Im (School of Earth and Environmental Science, Seoul National University) ;
  • Lee, Sung Keun (School of Earth and Environmental Science, Seoul National University)
  • 김효임 (서울대학교 지구환경과학부) ;
  • 이성근 (서울대학교 지구환경과학부)
  • Received : 2018.12.05
  • Accepted : 2018.12.18
  • Published : 2018.12.31

Abstract

Despite the utility of solid-state NMR, NMR studies of iron-bearing silicate glasses remain a challenge because the variations in the peak position and width with increasing iron content reflect both paramagnetic effect and iron-induced structural changes. Therefore, it is essential to elucidate the effect of temperature on the NMR signal for iron-bearing silicate glasses. Here, we report the $^{29}Si$ and $^{27}Al$ MAS NMR spectra for $(Mg_{0.95}Fe_{0.05})SiO_3$ and $Fe_2O_3$-bearing $CaAl_2Si_2O_8$ (anorthite) glasses with varying spinning speed to interpret the NMR spectra for iron-bearing silicate glasses. The increase in the spinning speed results in an increase in the sample temperature. The current NMR results allow us to understand the origins of the changes in NMR signal with increasing iron content and to provide information on the dipolar interaction between nuclear spins. The $^{29}Si$ NMR spectra for $(Mg_{0.95}Fe_{0.05})SiO_3$ glass and $^{27}Al$ NMR spectra for $Fe_2O_3$-bearing $CaAl_2Si_2O_8$ glasses show that the peak shape and position of iron-bearing glasses do not change with increasing spinning speed up to 30 kHz. These results suggest that the NMR signal in the Fe-bearing glasses may stem from the 'survived nuclear spins' beyond the cutoff radius from the Fe, not from the paramagnetic shift. Based on the current results, the observed apparent shifts toward lower frequency of Al peak for $Fe_2O_3$-bearing $CaAl_2Si_2O_8$ glasses with increasing $Fe_2O_3$ at all spinning speed (15 kHz to 30 kHz) indicate the increase in the fraction of ${Q^4}_{Al}$(nSi) with lower n (i.e., 1 or 2) with increasing $Fe_2O_3$ and the spatial proximity between Fe and ${Q^4}_{Al}$(nSi) with higher n (i.e., 3 or 4). The present results show that changes in the NMR signal for iron-bearing silicate glasses reflect the actual iron-induced structural changes. Thus, it is clear that the applications of solid-state NMR for iron-bearing silicate glasses hold strong promise for unraveling the atomic structure of natural silicate glasses.

고상 핵자기공명 분광분석은 비정질의 원자 구조를 제공하는 효과적인 방법론으로 다양한 비정질 규산염의 원자구조를 규명해왔다. 하지만, 함철 비정질 규산염의 경우, 철 함량 증가에 따른 신호의 변화가 상자성 효과와 구조 변동을 모두 반영하고 있기 때문에 분석에 많은 어려움이 있다. 이에 철 함량 증가에 따른 신호 변화가 실제 구조의 변동으로부터 기인한 것인지 확인하기 위해서는 온도변화에 따른 신호의 이동 여부를 관찰하는 것이 필수적이다. 본 연구에서는 철 함량에 따른 함철 비정질 규산염의 신호 변화를 해석하기 위하여 철이 포함된 휘석과 아노르다이트 조성의 비정질의 가변회전 속도 $^{29}Si$$^{27}Al$ NMR 실험을 수행하였다. 이는 온도 상승에 따른 신호의 변화 여부를 확인할 수 있게 하며, 쌍극자 효과에 관한 정보를 제공한다. 함철 휘석 비정질의 $^{29}Si$ NMR과 함철 아노르다이트 비정질의 $^{27}Al$ NMR 결과, 회전 속도 증가에도 불구하고 신호의 형태 및 위치가 달라지지 않았다. 회전 속도의 증가가 신호에 변화를 야기하지 않음을 확인한 본 결과는 철 함량 증가로 인한 신호의 변화가 상자성 이동 기원이 아니라, 철로부터 컷오프 반경 너머의 생존 신호임을 지시한다. 이에 철 함량 증가에 따라 아노르다이트 비정질의 Al 신호가 음의 화학적 차폐 방향으로 이동하는 현상은, 철의 진입에 따른 ${Q^4}_{Al}$(1 또는 2Si) 비율의 상대적 증가와 철과 ${Q^4}_{Al}$(3 또는 4Si) 구조간의 높은 공간적 근접도를 지시한다. 본 결과는 철 함량에 따른 규산염 비정질의 고상 NMR 신호 변화가 실제 구조적 변화를 지시하고 있음을 보여주며, 고상 NMR이 자연계에 존재하는 각종 유리질의 구조 분석에 효과적으로 적용될 수 있음을 제시한다.

Keywords

References

  1. Barron, P.F., Frost, R.L., and Skjemstad, J.O. (1983) $^{29}Si$ spin-lattice relaxation in aluminosilicates. Journal of the Chemical Society-Chemical Communications, 581-583.
  2. Bertini, I., Emsley, L., Lelli, M., Luchinat, C., Mao, J.F., and Pintacuda, G. (2010) Ultrafast MAS Solid-State NMR Permits Extensive C-13 and H-1 Detection in Paramagnetic Metalloproteins. Journal of the American Chemical Society 132, 5558-5559. https://doi.org/10.1021/ja100398q
  3. Bertini, I., Luchinat, C., and Parigi, G. (2002) Magnetic susceptibility in paramagnetic NMR. Progress in Nuclear Magnetic Resonance Spectroscopy 40, 249-273. https://doi.org/10.1016/S0079-6565(02)00002-X
  4. Bielecki, A. and Burum, D.P. (1995) Temperature-dependence of $^{207}Pb$ MAS spectra of solid lead nitrate - An accurate, sensitive thermometer for variable-temperature MAS. Journal of Magnetic Resonance Series A 116, 215-220. https://doi.org/10.1006/jmra.1995.0010
  5. Davis, M.C., Sanders, K.J., Grandinetti, P.J., Gaudio, S.J., and Sen, S. (2011) Structural investigations of magnesium silicate glasses by $^{29}Si$ 2D Magic-Angle Flipping NMR. Journal of Non-Crystalline Solids 357, 2787-2795. https://doi.org/10.1016/j.jnoncrysol.2011.02.045
  6. Di Genova, D., Kolzenburg, S., Wiesmaier, S., Dallanave, E., Neuville, D.R., Hess, K.U., and Dingwell, D.B. (2017a) A compositional tipping point governing the mobilization and eruption style of rhyolitic magma. Nature 552, 235-238. https://doi.org/10.1038/nature24488
  7. Di Genova, D., Vasseur, J., Hess, K.U., Neuville, D.R., and Dingwell, D.B. (2017b) Effect of oxygen fugacity on the glass transition, viscosity and structure of silica- and iron-rich magmatic melts. Journal of Non-Crystalline Solids 470, 78-85. https://doi.org/10.1016/j.jnoncrysol.2017.05.013
  8. Grey, C.P. and Dupre, N. (2004) NMR studies of cathode materials for lithium-ion rechargeable batteries. Chemical Reviews 104, 4493-4512. https://doi.org/10.1021/cr020734p
  9. Grimmer, A.R., Vonlampe, F., Magi, M., and Lippmaa, E. (1983) Solid-state high-resolution $^{29}Si$ NMR of silicates: Influence of $Fe^{2+}$ in olivines. Zeitschrift Fur Chemie 23, 343-344.
  10. Kim, H.-I. and Lee, S.K. (2018) Structure and disorder in $(Mg,Fe)SiO_3$ glasses and melts: Insights from high-resolution $^{29}Si$ and $^{17}O$ solid-state NMR. submitted.
  11. Kim, H.-I., Sur, J.C., and Lee, S.K. (2016) Effect of iron content on the structure and disorder of iron-bearing sodium silicate glasses: A high-resolution $^{29}Si$ and $^{17}O$ solid-state NMR study. Geochimica et Cosmochimica Acta 173, 160-180. https://doi.org/10.1016/j.gca.2015.10.023
  12. Kim, J., Li, W., Philips, B.L., and Grey, C.P. (2011) Phosphate adsorption on the iron oxyhydroxides goethite (alpha-FeOOH), akaganeite (beta-FeOOH), and lepidocrocite (gamma-FeOOH): a P-31 NMR Study. Energy & Environmental Science 4, 4298-4305. https://doi.org/10.1039/c1ee02093e
  13. Kubicki, J.D. and Lasaga, A.C. (1991) Molecular-dynamics simulations of pressure and temperature effects on $MgSiO_3$ and $Mg-_2SiO_4$ melts and glasses. Physics and Chemistry of Minerals 17, 661-673.
  14. Kurland, R.J. and McGrarvey, B.R. (1970) Isotropic NMR shifts in transition metal complexes: The calculation of the Fermi contact and pseudocontact terms. Journal of Magnetic Resonance 2, 286-301.
  15. Laage, S., Sachleben, J.R., Steuernagel, S., Pierattelli, R., Pintacuda, G., and Emsley, L. (2009) Fast acquisition of multi-dimensional spectra in solid-state NMR enabled by ultra-fast MAS. Journal of Magnetic Resonance 196, 133-141. https://doi.org/10.1016/j.jmr.2008.10.019
  16. Langer, B., Schnell, L., Spiess, H.W., and Grimmer, A.R. (1999) Temperature calibration under ultrafast MAS conditions. Journal of Magnetic Resonance 138, 182-186. https://doi.org/10.1006/jmre.1999.1717
  17. Lee, J., Seymour, L.D., Pell, A.J., Dutton, S.E., and Grey, C.P. (2017) A systematic study of Mg-25 NMR in paramagnetic transition metal oxides: applications to Mg-ion battery materials. Physical Chemistry Chemical Physics 19, 613-625. https://doi.org/10.1039/C6CP06338A
  18. Lee, S.K. (2005) Microscopic origins of macroscopic properties of silicate melts and glasses at ambient and high pressure: Implications for melt generation and dynamics. Geochimica et Cosmochimica Acta 69, 3695-3710. https://doi.org/10.1016/j.gca.2005.03.011
  19. Lee, S.K. (2011) Simplicity in melt densification in multicomponent magmatic reservoirs in Earth's interior revealed by multinuclear magnetic resonance. Proceedings of the National Academy of Sciences of the United States of America 108, 6847-6852. https://doi.org/10.1073/pnas.1019634108
  20. Lee, S.K., Eng, P.J., and Mao, H.K. (2014) Probing of Pressure-Induced Bonding Transitions in Crystalline and Amorphous Earth Materials: Insights from X-ray Raman Scattering at High Pressure, in: Henderson, G.S., Neuville, D.R., Downs, R.T. (Eds.), Spectroscopic Methods in Mineralology and Materials Sciences, pp. 139-174.
  21. Lee, S.K., Kim, H.I., Kim, E.J., Mun, K.Y., and Ryu, S. (2016) Extent of disorder in magnesium aluminosilicate glasses: Insights from $^{27}Al$ and $^{17}O$ NMR. Journal of Physical Chemistry C 120, 737-749.
  22. Lee, S.K., Kim, Y.H., Chow, P., Xiao, Y.M., Ji, C., and Shen, G.Y. (2018) Amorphous boron oxide at megabar pressures via inelastic X-ray scattering. Proceedings of the National Academy of Sciences of the United States of America 115, 5855-5860. https://doi.org/10.1073/pnas.1800777115
  23. Lee, S.K. and Stebbins, J.F. (1999) The degree of aluminum avoidance in aluminosilicate glasses. American Mineralogist 84, 937-945. https://doi.org/10.2138/am-1999-5-630
  24. Lee, S.K. and Stebbins, J.F. (2009) Effects of the degree of polymerization on the structure of sodium silicate and aluminosilicate glasses and melts: An $^{17}O$ NMR study. Geochimica et Cosmochimica Acta 73, 1109-1119. https://doi.org/10.1016/j.gca.2008.10.040
  25. Lussier, A.J., Aguiar, P.M., Michaelis, V.K., Kroeker, S., and Hawthorne, F.C. (2009) The occurrence of tetrahedrally coordinated Al and B in tourmaline: An $^{11}B$ and $^{27}Al$ MAS NMR study. American Mineralogist 94, 785-792. https://doi.org/10.2138/am.2009.3000
  26. Mysen, B.O. and Richet, P. (2005) Silicate glasses and melts: Properties and structure. Elsevier, Amsterdam.
  27. Navrotsky, A., Peraudeau, G., McMillan, P., and Coutures, J.P. (1982) A thermochemical study of glasses and crystals along the joins silica-calcium aluminate and silica-sodium aluminate. Geochimica et Cosmochimica Acta 46, 2039-2047. https://doi.org/10.1016/0016-7037(82)90183-1
  28. Neue, G. and Dybowski, C. (1997) Determining temperature in a magic-angle spinning probe using the temperature dependence of the isotropic chemical shift of lead nitrate. Solid State Nuclear Magnetic Resonance 7, 333-336. https://doi.org/10.1016/S0926-2040(96)01291-X
  29. Oestrike, R., Yang, W.H., Kirkpatrick, R.J., Hervig, R.L., Navrotsky, A., and Montez, B. (1987) High-resolution $^{23}Na$, $^{27}Al$, and $^{29}Si$ NMR spectroscopy of framework aluminosilicate glasses. Geochimica et Cosmochimica Acta 51, 2199-2209. https://doi.org/10.1016/0016-7037(87)90269-9
  30. Palke, A.C. and Stebbins, J.F. (2011) Variable-temperature $^{27}Al$ and $^{29}Si$ NMR studies of synthetic forsterite and Fe-bearing Dora Maira pyrope garnet: Temperature dependence and mechanisms of paramagnetically shifted peaks. American Mineralogist 96, 1090-1099. https://doi.org/10.2138/am.2011.3686
  31. Palke, A.C., Stebbins, J.F., Geiger, C.A., and Tippelt, G. (2015) Cation order-disorder in Fe-bearing pyrope and grossular garnets: A $^{27}Al$ and $^{29}Si$ MAS NMR and $^{57}Fe$ Mossbauer spectroscopy study. American Mineralogist 100, 536-547. https://doi.org/10.2138/am-2015-5062
  32. Park, S.Y. and Lee, S.K. (2009) Probing atomic structure of quarternary aluminosilciate glasses using solid-state NMR. Jornal of Mineralogical Society of Korea 22, 343-352.
  33. Park, S.Y. and Lee, S.K. (2014) High-resolution solid-state NMR study of the effect of composition on network connectivity and structural disorder in multi-component glasses in the diopside and jadeite join: Implications for structure of andesitic melts. Geochimica et Cosmochimica Acta 147, 26-42. https://doi.org/10.1016/j.gca.2014.10.019
  34. Park, S.Y. and Lee, S.K. (2018) Probing the structure of Fe-free model basaltic glasses: A view from a solid-state $^{27}Al$ and $^{17}O$ NMR study of Na-Mg silicate glasses, $Na_2O-MgO-Al_2O_3-SiO_2$ glasses, and synthetic Fe-free KLB-1 basaltic glasses. Geochimica et Cosmochimica Acta 238, 563-579. https://doi.org/10.1016/j.gca.2018.07.032
  35. Richet, P. (1984) Viscosity and configurational entropy of silicate melts. Geochimica et Cosmochimica Acta 48, 471-483. https://doi.org/10.1016/0016-7037(84)90275-8
  36. Sen, S., Maekawa, H., and Papatheodorou, G.N. (2009) Short-range structure of invert glasses along the pseudo-binary join $MgSiO_3-Mg_2SiO_4$: Results from $^{29}Si$ and $^{25}Mg$ MAS NMR spectroscopy. Journal of Physical Chemistry B 113, 15243-15248. https://doi.org/10.1021/jp9079603
  37. Smith, K.A., Kirkpatrick, R.J., Oldfield, E., and Henderson, D.M. (1983) High-resolution silicon-29 nuclear magnetic resonance spectroscopic study of rock-forming silicates. American Mineralogist 68, 1206-1215.
  38. Stebbins, J.F. (2017) Toward the wider application of Si-29 NMR spectroscopy to paramagnetic transition metal silicate minerals: Copper(II) silicates. American Mineralogist 102, 2406-2414. https://doi.org/10.2138/am-2017-6176
  39. Stebbins, J.F. and Kelsey, K.E. (2009) Anomalous resonances in $^{29}Si$ and $^{27}Al$ NMR spectra of pyrope ($[Mg,Fe]_3Al_2Si_3O_{12}$) garnets: Effects of paramagnetic cations. Physical Chemistry Chemical Physics 11, 6906-6917. https://doi.org/10.1039/b904731j
  40. Stebbins, J.F., Kroeker, S., Lee, S.K., and Kiczenski, T.J. (2000) Quantification of five- and six-coordinated aluminum ions in aluminosilicate and fluoride-containing glasses by high-field, high-resolution Al-27 NMR. Journal of Non-Crystalline Solids 275, 1-6. https://doi.org/10.1016/S0022-3093(00)00270-2
  41. Stebbins, J.F., Panero, W.R., Smyth, J.R., and Frost, D.J. (2009) Forsterite, wadsleyite, and ringwoodite ($Mg_2SiO_4$): $^{29}Si$ NMR constraints on structural disorder and effects of paramagnetic impurity ions. American Mineralogist 94, 626-629. https://doi.org/10.2138/am.2009.3140
  42. Stebbins, J.F. and Xue, X. (2014) NMR spectroscopy of inorganic Earth materials, in: Henderson, G.S., Neuville, D.R., Downs, R.T. (Eds.), Reviews in Mineralogy and Geochemistry. Mineralogical Society of America, Chantilly, Virginia, pp. 605-653.
  43. Stixrude, L. and Karki, B. (2005) Structure and freezing of $MgSiO_3$ liquid in Earth's lower mantle. Science 310, 297-299. https://doi.org/10.1126/science.1116952
  44. Takahashi, T., Kawashima, H., Sugisawa, H., and Baba, T. (1999) Pb-207 chemical shift thermometer at high temperature for magic angle spinning experiments. Solid State Nuclear Magnetic Resonance 15, 119-123. https://doi.org/10.1016/S0926-2040(99)00039-9