DOI QR코드

DOI QR Code

Effects of Electro-conductivity on Growth of Beet and Turnip in the Reclaimed Land Soil

간척지 토양에서 양액의 전기전도도가 비트 및 순무의 생장에 미치는 영향

  • Jo, Ji-Young (Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Sung, Ho-Young (Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Chun, Jin-Hyuk (Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Park, Jong-Seok (Department of Horticulture, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Park, Sang-Un (Department of Crop Science, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Park, Young-Jun (Agricultural Infrastructure, Rural Community & Infrastructure Research Group, Rural Research Institute, Korea Rural Community Corporation) ;
  • Kim, Sun-Ju (Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University)
  • 조지영 (충남대학교 농업생명과학대학 생물환경화학과) ;
  • 성호영 (충남대학교 농업생명과학대학 생물환경화학과) ;
  • 천진혁 (충남대학교 농업생명과학대학 생물환경화학과) ;
  • 박종석 (충남대학교 농업생명과학대학 원예학과) ;
  • 박상언 (충남대학교 농업생명과학대학 식물자원학과) ;
  • 박영준 (한국농어촌공사 농어촌연구원) ;
  • 김선주 (충남대학교 농업생명과학대학 생물환경화학과)
  • Received : 2018.07.06
  • Accepted : 2018.09.19
  • Published : 2018.09.30

Abstract

BACKGROUND: The present study aimed to examine the crops capable of growing and adapting to the external environment and various stresses of reclaimed agriculture land for the development of high value-added agricultural utilization technology based on reclaimed land through standardization and empirical study of cultivation environment for cultivating crops. METHODS AND RESULTS: Two crops namely turnips and beets were selected for the salt tolerance test of soil environmental conditions on reclaimed land. Turnip and beet seedlings were planted on the soil collected at the 'Seokmun' reclaimed land. There are five treatments such as non-treatment, 1.0, 2.0 (control), 4.0 and $8.0dS{\cdot}m^{-1}$ of EC. The contents of betacyanin in beet roots was highest in control and decreased with increasing salt concentration. The GSL contents in the turnip roots waswere highest at EC 2.0 and decreased with increasing salt concentration, whereas those in turnip leaves waswere high both in the non-treated control and atthe EC 1.0-treatment. But, tThere was, however, no statistical differences among the treatments. CONCLUSION: The degree of salt tolerance of crops was examined, and the limit EC iswas expected to be $3.0{\sim}4.0dS{\cdot}m^{-1}$ as reported to date. If the soil improvement is performed and irrigation systems are used in the actual reclaimed land, the EC of supplied irrigation will be low, and desalination effecttreatment by the lower EC of the supplied irrigation on the soil will lead to more favorable soil condition of the rhizosphere and cultivation environment offor the crops than those in the port experiment. Therefore, monitoring the salinity, water content and ground water level will enable prediction of the rhizosphere environment, and setting up irrigation management and supplying irrigation will lead to crop cultivation results that are close to normal.

Keywords

References

  1. Ahn, Y., Lee, S. H., Ji, K. J., Hong, B. D., Noh, H. M., Ryu, S. H., Lee, S. M., Yoon, S. I., Choi, Y. D., & Noh, Y. D. (2003). Studies on changes of soil characteristics and utilization after tidal land reclamation. Korea Agricultural and Rural Infrastructure Corporation Rural Research Institute, 1-332.
  2. Alonso-Blanco, C., Aars, M. G., Bentsink, L., Keurentjes, J. J. B., Reymond, M., Vreugdenhil, D., & Koornneef, M. (2009). What has natural variation taught us about plant development, physiology, and adaptation?. Plant Cell, 21(7), 1877-1896. https://doi.org/10.1105/tpc.109.068114
  3. Bang, M. H., Lee, D. Y., Han, M. W., Chung, H. G., Jeong, T. S., Choi, M. S., Lee, K. T., & Baek, N. I. (2009). Isolation and identification of secondary metabolites from the roots of Brassica rapa. Journal of Plant Biotechnology, 36(1), 64-67. https://doi.org/10.5010/JPB.2009.36.1.064
  4. Bothe, H. (1976). Salzresistenz bei pflanzen. Biologie in unserer Zeit, 6(1), 3-10. https://doi.org/10.1002/biuz.19760060103
  5. Brown, A. F., Yousef, G. G., Jeffery, E. H., Wallig, M. A., Kushad, M. M., & Juvik, J. A. (2002). Glucosinolate profiles in broccoli: Variation in levels and implications in breeding for caner chemoprotection. Journal of the American Society for Horticultural Science, 127(5), 807-813. https://doi.org/10.21273/JASHS.127.5.807
  6. Cartea, M. E., Velasco, P., Obregon, S., Padilla, G., & de-Haro A. (2008). Seasonal variation in glucosinolate content in Brassica oleracea crops grown in northwestern Spain. Phytochemistry, 69(2), 403-410. https://doi.org/10.1016/j.phytochem.2007.08.014
  7. Choi, S. C., Kim, J. G., & Choo, Y. S. (2013). Effects of salt stress on inorganic ions and glycine betaine contents in leaves of Beta vulgaris var. cicla L. Korean Journal of Ecology and Environment, 46(3), 388-394. https://doi.org/10.11614/KSL.2013.46.3.388
  8. Chun, J. H., Kim, N. H., Seo, M. S., Jin, M., Park, S. U., Arasu, M. V., Kim, S. J., & Al-Dhabi, N. A. (2016). Molecular characterization of glucosinolates and carotenoid biosynthetic genes in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Saudi Journal of Biological Sciences, 25, 71-82. 25, 71-82.
  9. Chung, S. H., & Byun, Y. H. (2009). Convenient methods for the extraction and discrimination of water-soluble plant pigments. Journal of The Korea Contents Association, 9(3), 353-360. https://doi.org/10.5392/JKCA.2009.9.3.353
  10. Clarke, D. B. (2010). Glucosinolates, structures and analysis in food. Analytical Methods, 2(4), 310-325. https://doi.org/10.1039/b9ay00280d
  11. Davies, K. J. (1995). Oxidative stress: the paradox of aerobic life. Biochemical Society Symposium, 61(1), 1-31.
  12. Dixon, R. A., & Paiva, N. L. (1995). Stress-induced phenylpropanoid metabolism. The Plant Cell, 7(7), 1085-1097. https://doi.org/10.1105/tpc.7.7.1085
  13. Elliott, D. C. (1979). Ionic regulation for cytokinindependent betacyanin synthesis in Amaranthus seedlings. Plant Physiology, 63(2), 264-268. https://doi.org/10.1104/pp.63.2.264
  14. Fahey, J. W., Zalcmann, A. T., & Talalay, P. (2001). The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry, 56, 5-51. https://doi.org/10.1016/S0031-9422(00)00316-2
  15. Florian, C. S., & Reinhold, C. (2004). Functional properties of anthocyanins and betalains in plants, food, and in human nutrition. Food Science & Technology, 15(1), 19-38. https://doi.org/10.1016/j.tifs.2003.07.004
  16. Gabrela, S. J., Patricia, R. B., Helena, P., & Mario, R. S. (2004). Betacyanin synthesis in red beet (Beta vulgaris) leaves induced by wounding and bacterial infiltration is preceded by an oxidative burst. Physiological and Molecular Plant Pathology, 64(3), 125-133. https://doi.org/10.1016/j.pmpp.2004.08.003
  17. Go, E. B., Kim, K. M., Lee, K. J., & Chae, J. C. (2014). Rhizomicrobes isolated from reclaimed land enhance growth and salt tolerance in plant. The Plant Resources Society of Korea, 4, 191-191.
  18. Guo, R. F., Yuan, G. F., & Wang, Q. M. (2013). Effect of NaCl treatments on glucosinolate metabolism in broccoli sprouts. Journal of Zhejiang University: Science B, 14(2), 124-131. https://doi.org/10.1631/jzus.B1200096
  19. Halkier, B. A., & Gershenzon, J. (2006). Biology and biochemistry of glucosinolates. Annual Review of Plant Biology, 57, 303-333. https://doi.org/10.1146/annurev.arplant.57.032905.105228
  20. Hasegawa, P. M., Bressa, R. A., Zhu, J. K., & Bohnert, H. J. (2000). Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology & Plant molecular Biology, 51, 463-499. https://doi.org/10.1146/annurev.arplant.51.1.463
  21. Hayakawa, K., & Agarie, S. (2010). Physiological roles of betacyanin in a halophyte, Suaeda japonica Makino. Plant Production Science, 13(4), 351-359. https://doi.org/10.1626/pps.13.351
  22. Hong, S. H., Kim, J. S., Park, J. W., & Lee, E. Y. (2015). A study on the effect of the Rhizobacterium, Bacillus sp. SH1RP8 and potassium family polymers on the crop growth under saline. Korean Society for Biotechnology and Bioengineering Journal, 30(3), 97-102.
  23. Hwang, S. J., Chun, J. H, & Kim, S. J. (2017). Effect of cold stress on carotenoids in kale leaves (Brassica oleracea). Korean Journal of Environmental Agriculture, 36(2), 106-112. https://doi.org/10.5338/KJEA.2017.36.2.19
  24. Jain, G., & Gould, K. S. (2015). Are betalain pigments the functional homologues of anthocyanins in plants?. Environmental and Experimental Botany, 119, 48-53. https://doi.org/10.1016/j.envexpbot.2015.06.002
  25. Jain, G., & Gould, K. S. (2015). Functional significance of betalain biosynthesis in leaves of Disphyma australe under salinity stress. Environmental and Expeirmental Botany, 109, 131-140. https://doi.org/10.1016/j.envexpbot.2014.09.002
  26. Jain, G., Schwinn, K. E., & Gould, K. S. (2015). Betalain induction by l-DOPA application confers photoprotection to saline-exposed leaves of Disphyma australe. New Phytologist, 207(4), 1075 -1083. https://doi.org/10.1111/nph.13409
  27. Jeong, N. R., Chun, J. H., Park, E. J., Lim, Y. H., & Kim, S. J. (2015). Variations of glucosinolates in kale leaves (Brassica oleracea var. acephala) treated with droughtstress in autumn and spring seasons. Korean Journal of Agricultural Science, 42(3), 167-175. https://doi.org/10.7744/cnujas.2015.42.3.167
  28. Jeong, R. H., Wu, Q., Cho, J. G., Lee, D. Y., Shrestha, S., Lee, M. H., Lee, K. T., Choi, M. S., Jeong, T. S., Ahn, E. M., Chung, H. G., Rho, Y. D., & Baek, N. I. (2013). Isolation and identification of flavonoids from the roots of Brassica rapa ssp. Journal of Applied Biological Chemistry, 56(1), 23-27. https://doi.org/10.3839/jabc.2013.005
  29. Kim, C. R., Lim, Y. S., Lee, S. W., & Kim, S. J. (2011). Identification and quantification of glucosinolates in rocket salad (Eruca sativa). Korean Journal of Agricultural Science, 38(2), 285-294.
  30. Kim, D. W., Yun, S. K., Park, H. H., Hwang, J. J., Han, O. K., Park, T. I., Jung, G. H., Lee, J. E., Kim, S. L., & Chung, Y. H. (2011). Physiological and proteomic responses of barley seedlings to salt stress. The Korean Society of international Agriculture, 23(5), 537-545.
  31. Kim, S. J., & Ishii, G. (2006). Glucosinolate profiles in the seeds, leaves and roots of rocket salad (Eruca sativa Mill.) and anti-oxidative activities of intact plant powder and purified 4-methoxyglucobrassicin. Soil Science and Plant Nutrition, 52(3), 394-400. https://doi.org/10.1111/j.1747-0765.2006.00049.x
  32. Kim, Y. J., Chun, J. H., & Kim, S. J. (2015). Influence of the lime on inorganic ion and glucosinolate contents in Chinese cabbage. Korean Journal of Agricultural Science, 42(4), 405-421.
  33. Ko, H. C., Sung, J. S., Hur, O. S., Baek, H. J., Jeon, Y. A., Luitel, B. P., Ryu, K. Y., Kim, J. B., & Rhee, J. H. (2017). Comparison of glucosinolate contents in leaves and roots of radish (Raphanus spp.). Korean Journal of Plant Resources, 30(6), 579-589. https://doi.org/10.7732/KJPR.2017.30.6.579
  34. Lee, G. H., Yu, J. G., Park, J. H., & Park, Y. D. (2014). Construction of a network model to reveal genes related to salt tolerance in Chinese cabbage. Korean Journal of Horticultural Science and Technology, 32(5), 684-693. https://doi.org/10.7235/hort.2014.14034
  35. Lee, G. R., Kim, Y. J., Chun, J. H., Lee, M. K., Ryu, D. K., Park, S. H..Y., Chung, S. O., Park, S. U., Lim, Y. P., & Kim, S. J. (2014). Variation of glucosinolate contents of 'Sinhongssam' grown under various light sources, periods, and light intensities. Korean Journal of Agricultural Science, 41(2), 125-133. https://doi.org/10.7744/cnujas.2014.41.2.125
  36. Lee, H. J., Chun, J. H., & Kim, S. J. (2017). Effects of water stress on carotenoid and proline contents in kale (Brassica oleracea var. acephala) leaves. Korean Journal of Environmental Agriculture, 36(2), 97-105. https://doi.org/10.5338/KJEA.2017.36.2.16
  37. Lee, J. Y., Jang, B. C., Lee, S. Y., Park, J. H., Choi, G. H., Kim, S. C., & Kim, T. W. (2008). Growth response and changes of nitrate and sucrose content in tomato under salt stress condition. Korean Society of Soil Sciences and Fertilizer, 41(3), 164-169.
  38. Lee, S. D. (2006). The study of the status quo into the production, utilization and efficacy of turnip. Journal of Health Science & Medical Technology, 32(1), 47-60.
  39. Lutts, S., Kinet, J. M., & Bouharmont, J. (1995). Changes in plant response to NaCl during development of rice (Oryza sativa L.) varieties differing in salinity resistance. Journal of Experimental Botany, 46(293), 1843-1852. https://doi.org/10.1093/jxb/46.12.1843
  40. Munns, R., & Termaat, A. (1986). Whole-plant responses to salinity. Australian Journal of Physiology, 3, 143-160.
  41. Nakashima, T., Araki, T., & Ueno, O. (2011). Photoprotective function of betacyanin in leaves of Amaranthus cruentus L. under water stress. Photosynthetica, 49(4), 497-506. https://doi.org/10.1007/s11099-011-0062-7
  42. Parida, A. K., & Das, A. B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 60(3), 324-349. https://doi.org/10.1016/j.ecoenv.2004.06.010
  43. Park, Y. J., Chun, J. H., Woo, H. Y., Akiko, M. N., & Kim, S. J. (2017). Effects of different sulfur ion concentration in nutrient solution and light source on glucosinolate contents in kale sprouts (Brassica oleracea var. acephala). Korean Journal of Agricultural Science, 44(2), 261-271. https://doi.org/10.7744/KJOAS.20170026
  44. Ribeiro, M. V., Deuner, S., Benitez, L. C., Einhardt, A. M., Peters, J. A., & Braga, E. J. B. (2014). Betacyanin and antioxidant system in tolerance to salt stress in Alternanthera philoxeroides. Agrociencia, 48(2), 199-210.
  45. Rodrguez, M., Canales, E., & Borras-Hidalzo, O. (2005). Molecular aspects of abiotic stress in plants. Biotecnologia Aplicada, 22, 1-10.
  46. Slawomir, W. (2005). Formation of decarboxylated betacyanins in heated purified betacyanin fractions from red beet root (Beta vulgaris L.) monitored by LC-MS/MS. Journal of Agricultural and Food Chemistry, 53(9), 3483-3487. https://doi.org/10.1021/jf048088d
  47. Sobhanian, H., Aghaei, K., & Komatsu, S. (2011). Changes in the plant proteome resulting from salt stress: Toward the creation of salt-tolerant crops?. Journal of Proteomics, 74(8), 1323-1337. https://doi.org/10.1016/j.jprot.2011.03.018
  48. Talalay, P., & Zhang, Y. (1996). Chemoprotection against cancer by isothiocyanates and glucosinolates. Biochemical Society Transactions, 24(3), 806-810. https://doi.org/10.1042/bst0240806
  49. van Etten, C. H., Daxenbichler, M. E., & Wolff, I. A. (1969). Natural glucosinolates (thioglucosides) in foods and feeds. Journal of Agricultural and Food Chemistry, 17(3), 483-491. https://doi.org/10.1021/jf60163a013
  50. Volkmar, K. M., Hu, Y., & Steppuhn, H. (1998). Physiological responses of plants to salinity: A review. Canadian Journal of Plant Science, 78, 19-27. https://doi.org/10.4141/P97-020
  51. Wang, C. Q., Xu, C., Wei, J. G., Wang, H. B., & Wang, S. H. (2008). Enhanced tonoplast H+-ATPase activity and superoxide dismutase activity in the halophyte Suaeda salsa containing high level of betacyanin. Journal of Plant Growth Regulation, 27(1), 58-67. https://doi.org/10.1007/s00344-007-9031-6
  52. Yi, M. R., Hee, K. C., & Bu, H. J. (2017). Antioxidant and anti-inflammatory activity of extracts from red beet (Beta vulagaris) root. Korean Journal of Food Preservation, 24(3), 413-420. https://doi.org/10.11002/kjfp.2017.24.3.413
  53. Zhang, Y., & Talalay, P. (1994). Anticarcinogenic activities of organic isothiocyanates: chemistry and mechanisms. Cancer Research, 54(7), 1976-1981.