DOI QR코드

DOI QR Code

Numerical Study of the Heat Removal Performance for a Passive Containment Cooling System using MARS-KS with a New Empirical Correlation of Steam Condensation

새로운 응축열전달계수 상관식이 적용된 MARS-KS를 활용한 원자로건물 피동냉각계통 열제거 성능의 수치적 연구

  • Jang, Yeong-Jun (Department of Nuclear and Energy Engineering, Jeju National University) ;
  • Lee, Yeon-Gun (Department of Nuclear and Energy Engineering, Jeju National University) ;
  • Kim, Sin (School of Energy System Engineering, Chung-Ang University) ;
  • Lim, Sang-Gyu (Central Research Institute, Korea Hydro and Nuclear Power Co.)
  • 장영준 (제주대학교 에너지공학과) ;
  • 이연건 (제주대학교 에너지공학과) ;
  • 김신 (중앙대학교 에너지시스템공학부) ;
  • 임상규 (한국수력원자력 중앙연구원)
  • Received : 2018.10.11
  • Accepted : 2018.11.20
  • Published : 2018.12.31

Abstract

The passive containment cooling system (PCCS) has been designed to remove the released decay heat during the accident by means of the condensation heat transfer phenomenon to guarantee the safety of the nuclear power plant. The heat removal performance of the PCCS is mainly governed by the condensation heat transfer of the steam-air mixture. In this study, the heat removal performance of the PCCS was evaluated by using the MARS-KS code with a new empirical correlation for steam condensation in the presence of a noncondensable gas. A new empirical correlation implemented into the MARS-KS code was developed as a function of parameters that affect the condensation heat transfer coefficient, such as the pressure, the wall subcooling, the noncondensable gas mass fraction and the aspect ratio of the condenser tube. The empirical correlation was applied to the MARS-KS code to replace the default Colburn-Hougen model. The various thermal-hydraulic parameters during the operation of the PCCS follonwing a large-break loss-of-coolant-accident were analyzed. The transient pressure behavior inside the containment from the MARS-KS with the empirical correlation was compared with calculated with the Colburn-Hougen model.

피동원자로건물냉각계통(PCCS)은 사고 발생 시 원자로건물로 방출된 열을 제거하여 원전의 건전성을 보장하기 위해 설계되었다. PCCS의 열제거 성능은 증기-공기 혼합물의 응축열전달에 의해 결정된다. 본 연구에서는 응축열전달계수의 예측 정확도를 향상시키기 위해 새로운 상관식을 이식한 MARS-KS 코드를 사용하여 PCCS의 열제거 성능을 평가하였다. MARS-KS 코드에 사용된 새로운 상관식은 압력, 벽면과냉도, 비응축성 기체 질량분율 및 응축튜브의 종횡비와 같은 열전달계수에 영향을 미치는 변수들을 이용하여 개발하였고, 이는 MARS-KS코드의 기본 응축 모델인 Colburn-Hougen 모델을 대체하여 적용되었다. 대형파단 냉각재상실사고 발생 시 PCCS의 운전에 따른 다양한 열수력학적 변수들을 분석하였고, 열제거 성능 평가를 위해 새로운 상관식이 적용된 MARS-KS 코드의 원자로건물 압력거동 계산결과와 기존의 응축모델을 이용한 해석결과를 비교하였다.

Keywords

OGJGBN_2018_v27n4_27_f0001.png 이미지

Fig. 2. JNU condensation experimental facility

OGJGBN_2018_v27n4_27_f0002.png 이미지

Fig. 4 Steam mass flow at multi-junction 427.

OGJGBN_2018_v27n4_27_f0003.png 이미지

Fig. 5 Air mass fraction at SV400, SV310, and SV320.

OGJGBN_2018_v27n4_27_f0004.png 이미지

Fig. 6 PCCT temperature and PCCHX temperature.

OGJGBN_2018_v27n4_27_f0005.png 이미지

Fig. 7 PCCT level during LBLOCA.

OGJGBN_2018_v27n4_27_f0006.png 이미지

Fig. 8 LBLOCA ME data and heat removal rate by PHS and PCCS.

OGJGBN_2018_v27n4_27_f0007.png 이미지

Fig. 9 Containment pressure during the LBLOCA.

OGJGBN_2018_v27n4_27_f0008.png 이미지

Figs. 1. General concept of the PCCS with internal condensers. (a) Bundles of vertical condenser tubes; (b) Four trains of tube bundles connected to the passive containment cooling tank; (c) PCCS installed in the containment building

OGJGBN_2018_v27n4_27_f0009.png 이미지

Figs. 3. Nodalization scheme for containment with PCCS

References

  1. Cho Y. J., Euh D. J., Kwon T. S., 2013, Preliminary study of design of passive containment cooling system(PCCS), Korea Nuclear Society Spring Meeting, Gwangju, May 30-31.
  2. Jeon B. G., No H. C., 2014, Thermal-hydraulic evaluation of passive containment cooling system of improved APR+ during LOCAs, NED, Vol. 278, pp. 190-198.
  3. Lee K. W., Cheong A. J., Shin A. D., 2016, Assessment of condensation heat trasnfer models of MARS-KS and TRACE codes using PASCAL test, Proceedings of the International Conference Nuclear Energy for New Europe, Portoroz, Slovenia, September 5-8.
  4. Bang Y. S., et al., 2009, Improvements of condensation heat transfer models in MARS code for laminar flow in presence of non-condensable gas, Nuclear Engeeing and Technology., Vol. 41, pp. 1015-1024. https://doi.org/10.5516/NET.2009.41.8.1015
  5. Jingya L., Xiaoying Z., 2017, Simulation for cooling effect of PCCS in hot leg SB-LOCA of 1000 MW PWR, Nuclear Engineering and Design, Vol. 320, pp. 222-234. https://doi.org/10.1016/j.nucengdes.2017.06.011
  6. Fernandez-Cosials K., et al., 2017, Three-dimensional simulaton of a LBLOCA in an AP1000 containment building, Energy Procedia, Vol. 127, pp. 234-241. https://doi.org/10.1016/j.egypro.2017.08.124
  7. Li Y., et al., 2018, Numerical investigation of natural convection inside the containment with recovering passive containment cooling system using GASFLOW-MPI, Annals of Nuclear Energy, Vol. 114, pp. 1-10. https://doi.org/10.1016/j.anucene.2017.11.047
  8. Li Y., et al., 2019, Numerical study of thermal hydraulics behavior on the integral test facility for passive containment cooling system using GASFLOWMPI, Annals of Nuclear Energy, Vol. 123, pp. 86-96. https://doi.org/10.1016/j.anucene.2018.09.014
  9. Ha H. U., Lee S. W., Kim H. G., 2017, Optimal design of passive containment cooling system for innovative PWR, Nuclear Engineering and Technology, Vol. 49, pp. 941-952. https://doi.org/10.1016/j.net.2017.03.005
  10. Bae S. H., et al., 2015, Preliminary analysis of the thermal-hydraulic performance of a passive containment cooling system using the MARS-KS1.3 code, KOSEE, Vol. 24, No. 3, pp. 96-108.
  11. Lim S. G., et al., 2017, Prediction of heat removal performance for passive containment cooling system using MARS-KS code version 1.14, Korea Nuclear Society Spring Meeting, Jeju, May 18-19.
  12. Colburn A. P., 1934, Design of cooler condenser for mixtures of vapors with noncondensable gases, Industrial & Engineering Chemistry, Vol. 26, pp. 1178-1182. https://doi.org/10.1021/ie50299a011
  13. Jang Y. J., 2018, Experimental and numerical investigation of condensation heat transfer on the vertical tube under natural convection condition, Jeju National University, Ph. D. Dissertation, pp. 102-114.
  14. Lee Y. G., Jang Y. J., Choi D. J., 2017, An experimental study of air-steam condensation on the exterior surface of a vertical tube under natural convection conditions, International Journal of Heat and Mass Transfer, Vol. 104, pp. 1034-1047. https://doi.org/10.1016/j.ijheatmasstransfer.2016.09.016
  15. Yoon D. S., Jo H. J., Corradini M. L., 2017, Assessment of MELCOR condensation models with the presence of noncondensable gas in natural convection flow regime, Nuclear Engineering and Design, Vol. 317, p. 110-117. https://doi.org/10.1016/j.nucengdes.2017.03.018
  16. ANS Standard, 1973, Decay energy release rates following shutdown of uranium-fueled thermal reactors.
  17. Jerong D. W., et al., 2015, A Study on Heat Transfer Model and Performance of Passive Systems for Nuclear Power Plant Containment Cooling.
  18. Lee S. W., et al., 2017, The concept of the innovative power reactor, Nuclear Engineering and Technology, Vol. 49, pp. 1431-1441. https://doi.org/10.1016/j.net.2017.06.015
  19. Choi D. J., 2015, Experimental and numerical investigation of condensation heat transfer coefficient on a vertical tube of Passive Containment Cooling System, Jeju National University, Master thesis, pp.30-39.
  20. Bang H. M., 2017, Assessment of steam condensation model in MARS-KS with measured HTCs on vertical tube, Jeju National University, Master thesis, pp. 27-34.